Markov Chains

This book covers the classical theory of Markov chains on general state-spaces as well as many recent developments. The theoretical results are illustrated by simple examples, many of which are taken from Markov Chain Monte Carlo methods. The book is self-contained while all the results are carefull...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Douc, Randal (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Moulines, Eric (http://id.loc.gov/vocabulary/relators/aut), Priouret, Pierre (http://id.loc.gov/vocabulary/relators/aut), Soulier, Philippe (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Series in Operations Research and Financial Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05370nam a2200505 4500
001 978-3-319-97704-1
003 DE-He213
005 20191025111251.0
007 cr nn 008mamaa
008 181211s2018 gw | s |||| 0|eng d
020 |a 9783319977041  |9 978-3-319-97704-1 
024 7 |a 10.1007/978-3-319-97704-1  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Douc, Randal.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Markov Chains  |h [electronic resource] /  |c by Randal Douc, Eric Moulines, Pierre Priouret, Philippe Soulier. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVIII, 757 p. 424 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
505 0 |a Part I Foundations -- Markov Chains: Basic Definitions -- Examples of Markov Chains -- Stopping Times and the Strong Markov Property -- Martingales, Harmonic Functions and Polsson-Dirichlet Problems -- Ergodic Theory for Markov Chains -- Part II Irreducible Chains: Basics -- Atomic Chains -- Markov Chains on a Discrete State Space -- Convergence of Atomic Markov Chains -- Small Sets, Irreducibility and Aperiodicity -- Transience, Recurrence and Harris Recurrence -- Splitting Construction and Invariant Measures -- Feller and T-kernels -- Part III Irreducible Chains: Advanced Topics -- Rates of Convergence for Atomic Markov Chains -- Geometric Recurrence and Regularity -- Geometric Rates of Convergence -- (f, r)-recurrence and Regularity -- Subgeometric Rates of Convergence -- Uniform and V-geometric Ergodicity by Operator Methods -- Coupling for Irreducible Kernels -- Part IV Selected Topics -- Convergence in the Wasserstein Distance -- Central Limit Theorems -- Spectral Theory -- Concentration Inequalities -- Appendices -- A Notations -- B Topology, Measure, and Probability -- C Weak Convergence -- D Total and V-total Variation Distances -- E Martingales -- F Mixing Coefficients -- G Solutions to Selected Exercises. 
520 |a This book covers the classical theory of Markov chains on general state-spaces as well as many recent developments. The theoretical results are illustrated by simple examples, many of which are taken from Markov Chain Monte Carlo methods. The book is self-contained while all the results are carefully and concisely proven. Bibliographical notes are added at the end of each chapter to provide an overview of the literature. Part I lays the foundations of the theory of Markov chain on general state-spaces. Part II covers the basic theory of irreducible Markov chains starting from the definition of small and petite sets, the characterization of recurrence and transience and culminating in the Harris theorem. Most of the results rely on the splitting technique which allows to reduce the theory of irreducible to a Markov chain with an atom. These two parts can serve as a text on Markov chain theory on general state-spaces. Although the choice of topics is quite different from what is usually covered in a classical Markov chain course, where most of the emphasis is put on countable state space, a graduate student should be able to read almost all of these developments without any mathematical background deeper than that needed to study countable state space (very little measure theory is required). Part III deals with advanced topics on the theory of irreducible Markov chains, covering geometric and subgeometric convergence rates. Special attention is given to obtaining computable convergence bounds using Foster-Lyapunov drift conditions and minorization techniques. Part IV presents selected topics on Markov chains, covering mostly hot recent developments. It represents a biased selection of topics, reflecting the authors own research inclinations. This includes quantitative bounds of convergence in Wasserstein distances, spectral theory of Markov operators, central limit theorems for additive functionals and concentration inequalities. Some of the results in Parts III and IV appear for the first time in book form and some are original. 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
700 1 |a Moulines, Eric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Priouret, Pierre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Soulier, Philippe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319977034 
776 0 8 |i Printed edition:  |z 9783319977058 
830 0 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
856 4 0 |u https://doi.org/10.1007/978-3-319-97704-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)