Markov Chains

This book covers the classical theory of Markov chains on general state-spaces as well as many recent developments. The theoretical results are illustrated by simple examples, many of which are taken from Markov Chain Monte Carlo methods. The book is self-contained while all the results are carefull...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Douc, Randal (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Moulines, Eric (http://id.loc.gov/vocabulary/relators/aut), Priouret, Pierre (http://id.loc.gov/vocabulary/relators/aut), Soulier, Philippe (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Series in Operations Research and Financial Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I Foundations
  • Markov Chains: Basic Definitions
  • Examples of Markov Chains
  • Stopping Times and the Strong Markov Property
  • Martingales, Harmonic Functions and Polsson-Dirichlet Problems
  • Ergodic Theory for Markov Chains
  • Part II Irreducible Chains: Basics
  • Atomic Chains
  • Markov Chains on a Discrete State Space
  • Convergence of Atomic Markov Chains
  • Small Sets, Irreducibility and Aperiodicity
  • Transience, Recurrence and Harris Recurrence
  • Splitting Construction and Invariant Measures
  • Feller and T-kernels
  • Part III Irreducible Chains: Advanced Topics
  • Rates of Convergence for Atomic Markov Chains
  • Geometric Recurrence and Regularity
  • Geometric Rates of Convergence
  • (f, r)-recurrence and Regularity
  • Subgeometric Rates of Convergence
  • Uniform and V-geometric Ergodicity by Operator Methods
  • Coupling for Irreducible Kernels
  • Part IV Selected Topics
  • Convergence in the Wasserstein Distance
  • Central Limit Theorems
  • Spectral Theory
  • Concentration Inequalities
  • Appendices
  • A Notations
  • B Topology, Measure, and Probability
  • C Weak Convergence
  • D Total and V-total Variation Distances
  • E Martingales
  • F Mixing Coefficients
  • G Solutions to Selected Exercises.