Clustering Methods for Big Data Analytics Techniques, Toolboxes and Applications /

This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat dete...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Nasraoui, Olfa (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Ben N'Cir, Chiheb-Eddine (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Unsupervised and Semi-Supervised Learning,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04171nam a2200565 4500
001 978-3-319-97864-2
003 DE-He213
005 20191021202750.0
007 cr nn 008mamaa
008 181027s2019 gw | s |||| 0|eng d
020 |a 9783319978642  |9 978-3-319-97864-2 
024 7 |a 10.1007/978-3-319-97864-2  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Clustering Methods for Big Data Analytics  |h [electronic resource] :  |b Techniques, Toolboxes and Applications /  |c edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a IX, 187 p. 63 illus., 31 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Unsupervised and Semi-Supervised Learning,  |x 2522-848X 
505 0 |a Introduction -- Clustering large scale data -- Clustering heterogeneous data -- Distributed clustering methods -- Clustering structured and unstructured data -- Clustering and unsupervised learning for deep learning -- Deep learning methods for clustering -- Clustering high speed cloud, grid, and streaming data -- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis -- Large documents and textual data clustering -- Applications of big data clustering methods -- Clustering multimedia and multi-structured data -- Large-scale recommendation systems and social media systems -- Clustering multimedia and multi-structured data -- Real life applications of big data clustering -- Validation measures for big data clustering methods -- Conclusion. 
520 |a This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. . 
650 0 |a Electrical engineering. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Pattern recognition. 
650 1 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
650 2 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
700 1 |a Nasraoui, Olfa.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ben N'Cir, Chiheb-Eddine.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319978635 
776 0 8 |i Printed edition:  |z 9783319978659 
776 0 8 |i Printed edition:  |z 9783030074197 
830 0 |a Unsupervised and Semi-Supervised Learning,  |x 2522-848X 
856 4 0 |u https://doi.org/10.1007/978-3-319-97864-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)