Clustering Methods for Big Data Analytics Techniques, Toolboxes and Applications /
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat dete...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Σειρά: | Unsupervised and Semi-Supervised Learning,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Clustering large scale data
- Clustering heterogeneous data
- Distributed clustering methods
- Clustering structured and unstructured data
- Clustering and unsupervised learning for deep learning
- Deep learning methods for clustering
- Clustering high speed cloud, grid, and streaming data
- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis
- Large documents and textual data clustering
- Applications of big data clustering methods
- Clustering multimedia and multi-structured data
- Large-scale recommendation systems and social media systems
- Clustering multimedia and multi-structured data
- Real life applications of big data clustering
- Validation measures for big data clustering methods
- Conclusion.