Methods of Algebraic Geometry in Control Theory: Part I Scalar Linear Systems and Affine Algebraic Geometry /

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Falb, Peter (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Modern Birkhäuser Classics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04593nam a2200493 4500
001 978-3-319-98026-3
003 DE-He213
005 20191023231738.0
007 cr nn 008mamaa
008 180825s2018 gw | s |||| 0|eng d
020 |a 9783319980263  |9 978-3-319-98026-3 
024 7 |a 10.1007/978-3-319-98026-3  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Falb, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Methods of Algebraic Geometry in Control Theory: Part I  |h [electronic resource] :  |b Scalar Linear Systems and Affine Algebraic Geometry /  |c by Peter Falb. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a IX, 202 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics,  |x 2197-1803 
505 0 |a 0. Introduction -- 1. Scalar Linear Systems over the Complex Numbers -- 2. Scalar Linear Systems over a Field k -- 3. Factoring Polynomials -- 4. Affine Algebraic Geometry: Algebraic Sets -- 5. Affine Algebraic Geometry: The Hilbert Theorems -- 6. Affine Algebraic Geometry: Irreducibility -- 7. Affine Algebraic Geometry: Regular Functions and Morphisms I -- 8. The Laurent Isomorphism Theorem -- 9. Affine Algebraic Geometry: Regular Functions and Morphisms II -- 10. The State Space: Realizations -- 11. The State Space: Controllability, Observability, Equivalence -- 12. Affine Algebraic Geometry: Products, Graphs and Projections -- 13. Group Actions, Equivalence and Invariants -- 14. The Geometric Quotient Theorem: Introduction -- 15. The Geometric Quotient Theorem: Closed Orbits -- 16. Affine Algebraic Geometry: Dimension -- 17. The Geometric Quotient Theorem: Open on Invariant Sets -- 18. Affine Algebraic Geometry: Fibers of Morphisms -- 19. The Geometric Quotient Theorem: The Ring of Invariants -- 20. Affine Algebraic Geometry: Simple Points -- 21. Feedback and the Pole Placement Theorem -- 22. Affine Algebraic Geometry: Varieties -- 23. Interlude -- Appendix A: Tensor Products -- Appendix B: Actions of Reductive Groups -- Appendix C: Symmetric Functions and Symmetric Group Actions -- Appendix D: Derivations and Separability -- Problems -- References. 
520 |a "An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. 
650 0 |a Algebraic geometry. 
650 0 |a System theory. 
650 0 |a Control engineering. 
650 1 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
650 2 4 |a Systems Theory, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/M13070 
650 2 4 |a Control and Systems Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/T19010 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319980256 
776 0 8 |i Printed edition:  |z 9783319980270 
830 0 |a Modern Birkhäuser Classics,  |x 2197-1803 
856 4 0 |u https://doi.org/10.1007/978-3-319-98026-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)