Learning from Imbalanced Data Sets

This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced clas...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fernández, Alberto (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), García, Salvador (http://id.loc.gov/vocabulary/relators/aut), Galar, Mikel (http://id.loc.gov/vocabulary/relators/aut), Prati, Ronaldo C. (http://id.loc.gov/vocabulary/relators/aut), Krawczyk, Bartosz (http://id.loc.gov/vocabulary/relators/aut), Herrera, Francisco (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05056nam a2200541 4500
001 978-3-319-98074-4
003 DE-He213
005 20191027043027.0
007 cr nn 008mamaa
008 181022s2018 gw | s |||| 0|eng d
020 |a 9783319980744  |9 978-3-319-98074-4 
024 7 |a 10.1007/978-3-319-98074-4  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Fernández, Alberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Learning from Imbalanced Data Sets  |h [electronic resource] /  |c by Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C. Prati, Bartosz Krawczyk, Francisco Herrera. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVIII, 377 p. 71 illus., 50 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Introduction to KDD and Data Science -- 2 Foundations on Imbalanced Classification -- 3 Performance measures -- 4 Cost-sensitive Learning -- 5 Data Level Preprocessing Methods -- 6 Algorithm-level Approaches -- 7 Ensemble Learning -- 8 Imbalanced Classification with Multiple Classes -- 9 Dimensionality Reduction for Imbalanced Learning -- 10 Data Intrinsic Characteristics -- 11 Learning from Imbalanced Data Streams -- 12 Non-Classical Imbalanced Classification Problems -- 13 Imbalanced Classification for Big Data -- 14 Software and Libraries for Imbalanced Classification. . 
520 |a This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. . 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 0 |a Computer communication systems. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Information Systems and Communication Service.  |0 http://scigraph.springernature.com/things/product-market-codes/I18008 
650 2 4 |a Computer Communication Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/I13022 
700 1 |a García, Salvador.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Galar, Mikel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Prati, Ronaldo C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Krawczyk, Bartosz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Herrera, Francisco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319980737 
776 0 8 |i Printed edition:  |z 9783319980751 
776 0 8 |i Printed edition:  |z 9783030074463 
856 4 0 |u https://doi.org/10.1007/978-3-319-98074-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)