Explainable and Interpretable Models in Computer Vision and Machine Learning

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like per...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Escalante, Hugo Jair (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Escalera, Sergio (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Guyon, Isabelle (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Baró, Xavier (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Güçlütürk, Yağmur (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Güçlü, Umut (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), van Gerven, Marcel (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:The Springer Series on Challenges in Machine Learning,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05266nam a2200565 4500
001 978-3-319-98131-4
003 DE-He213
005 20191028162623.0
007 cr nn 008mamaa
008 181129s2018 gw | s |||| 0|eng d
020 |a 9783319981314  |9 978-3-319-98131-4 
024 7 |a 10.1007/978-3-319-98131-4  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Explainable and Interpretable Models in Computer Vision and Machine Learning  |h [electronic resource] /  |c edited by Hugo Jair Escalante, Sergio Escalera, Isabelle Guyon, Xavier Baró, Yağmur Güçlütürk, Umut Güçlü, Marcel van Gerven. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVII, 299 p. 73 illus., 58 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
505 0 |a 1 Considerations for Evaluation and Generalization in Interpretable Machine Learning -- 2 Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges -- 3 Learning Functional Causal Models with Generative Neural Networks -- 4 Learning Interpretable Rules for Multi-label Classification -- 5 Structuring Neural Networks for More Explainable Predictions -- 6 Generating Post-Hoc Rationales of Deep Visual Classification Decisions -- 7 Ensembling Visual Explanations -- 8 Explainable Deep Driving by Visualizing Causal Action -- 9 Psychology Meets Machine Learning: Interdisciplinary Perspectives on Algorithmic Job Candidate Screening -- 10 Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions -- 11 On the Inherent Explainability of Pattern Theory-based Video Event Interpretations. . 
520 |a This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations. 
650 0 |a Artificial intelligence. 
650 0 |a Optical data processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
700 1 |a Escalante, Hugo Jair.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Escalera, Sergio.  |e editor.  |0 (orcid)0000-0003-0617-8873  |1 https://orcid.org/0000-0003-0617-8873  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Guyon, Isabelle.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Baró, Xavier.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Güçlütürk, Yağmur.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Güçlü, Umut.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a van Gerven, Marcel.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319981307 
776 0 8 |i Printed edition:  |z 9783319981321 
830 0 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
856 4 0 |u https://doi.org/10.1007/978-3-319-98131-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)