Natural Computing for Unsupervised Learning

This book highlights recent research advances in unsupervised learning using natural computing techniques such as artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, artificial life, quantum computing, DNA computing, and others. The book also includes...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Li, Xiangtao (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Wong, Ka-Chun (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Unsupervised and Semi-Supervised Learning,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04999nam a2200589 4500
001 978-3-319-98566-4
003 DE-He213
005 20191024211311.0
007 cr nn 008mamaa
008 181031s2019 gw | s |||| 0|eng d
020 |a 9783319985664  |9 978-3-319-98566-4 
024 7 |a 10.1007/978-3-319-98566-4  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Natural Computing for Unsupervised Learning  |h [electronic resource] /  |c edited by Xiangtao Li, Ka-Chun Wong. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VI, 273 p. 121 illus., 79 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Unsupervised and Semi-Supervised Learning,  |x 2522-848X 
505 0 |a Introduction -- Part I - Basic Natural Computing Techniques for Unsupervised Learning -- Hard Clustering using Evolutionary Algorithms -- Soft Clustering using Evolutionary Algorithms -- Fuzzy / Rough Set Systems for Unsupervised Learning -- Unsupervised Feature Selection using Evolutionary Algorithms -- Unsupervised Feature Selection using Artificial Neural Networks -- Part II - Advanced Natural Computing Techniques for Unsupervised Learning -- Hybrid Genetic Algorithms for Feature Subset Selection in Model-Based Clustering -- Nature-Inspired Optimization Approaches for Unsupervised Feature Selection -- Co-Evolutionary Approaches for Unsupervised Learning -- Mining Evolving Patterns using Natural Computing Techniques -- Multi-objective Optimization for Unsupervised Learning -- Many-objective Optimization for Unsupervised Learning -- Part III - Applications -- Unsupervised Identification of DNA-binding Proteins using Natural Computing Techniques -- Parallel Solution-based Natural Clustering Techniques on Railway Engineering data -- Natural Computing Techniques for Community Detection on Online Social Networks -- Big Data Challenges and Scalability in Natural Computing for Unsupervised Learning -- Conclusion. 
520 |a This book highlights recent research advances in unsupervised learning using natural computing techniques such as artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, artificial life, quantum computing, DNA computing, and others. The book also includes information on the use of natural computing techniques for unsupervised learning tasks. It features several trending topics, such as big data scalability, wireless network analysis, engineering optimization, social media, and complex network analytics. It shows how these applications have triggered a number of new natural computing techniques to improve the performance of unsupervised learning methods. With this book, the readers can easily capture new advances in this area with systematic understanding of the scope in depth. Readers can rapidly explore new methods and new applications at the junction between natural computing and unsupervised learning. Includes advances on unsupervised learning using natural computing techniques Reports on topics in emerging areas such as evolutionary multi-objective unsupervised learning Features natural computing techniques such as evolutionary multi-objective algorithms and many-objective swarm intelligence algorithms. 
650 0 |a Electrical engineering. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Pattern recognition. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 1 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
700 1 |a Li, Xiangtao.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wong, Ka-Chun.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319985657 
776 0 8 |i Printed edition:  |z 9783319985671 
776 0 8 |i Printed edition:  |z 9783030075088 
830 0 |a Unsupervised and Semi-Supervised Learning,  |x 2522-848X 
856 4 0 |u https://doi.org/10.1007/978-3-319-98566-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)