Open Problems in Optimization and Data Analysis

Computational and theoretical open problems in optimization, computational geometry, data science, logistics, statistics, supply chain modeling, and data analysis are examined in this book. Each contribution provides the fundamentals needed to fully comprehend the impact of individual problems. Curr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Pardalos, Panos M. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Migdalas, Athanasios (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Optimization and Its Applications, 141
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04657nam a2200529 4500
001 978-3-319-99142-9
003 DE-He213
005 20191220125324.0
007 cr nn 008mamaa
008 181204s2018 gw | s |||| 0|eng d
020 |a 9783319991429  |9 978-3-319-99142-9 
024 7 |a 10.1007/978-3-319-99142-9  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
245 1 0 |a Open Problems in Optimization and Data Analysis  |h [electronic resource] /  |c edited by Panos M. Pardalos, Athanasios Migdalas. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIX, 330 p. 43 illus., 24 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 141 
505 0 |a Chapter 1- Social Influence-based Optimization Problems -- Chapter 2- New Statistical Robust Estimators, Open Problems -- Chapter 3- Optimal Location Problems for Electric Vehicles Charging Stations: Models and Challenges -- Chapter 4- Supply and Demand Selection Problems in Supply Chain Planning -- Chapter 5- Open problems in green supply chain modelingband optimization with carbon emission targets -- Chapter 6- Variants and Formulations of the Vehicle Routing Problem -- Chapter 7- New MIP model for Multiprocessor Scheduling Problem with Communication Delays -- Chapter 8- On Optimization Problems in Urban Transport -- Chapter 9- Some aspects of the Stackelberg Leader/Follower Model -- Chapter 10- Open research areas in distance geometry -- Chapter 11- A Circle Packing Problem and its Connection to Malfatti's Problem -- Chapter 12- Review of basic local searches for solving the Minimum sum-of-squares clustering problem -- Chapter 13- On the Design of Metaheuristics-based Algorithm Portfolios -- Chapter 14- Integral Simplex Methods for the Set Partitioning Problem: Globalization and Anti-Cycling -- Chapter 15- Open problems on Benders Decomposition Algorithm -- Chapter 16- An Example of Nondecomposition in Data Fitting by Piecewise Monotonic Divided Differences of Order Higher than Two. 
520 |a Computational and theoretical open problems in optimization, computational geometry, data science, logistics, statistics, supply chain modeling, and data analysis are examined in this book. Each contribution provides the fundamentals needed to fully comprehend the impact of individual problems. Current theoretical, algorithmic, and practical methods used to circumvent each problem are provided to stimulate a new effort towards innovative and efficient solutions. Aimed towards graduate students and researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, this book provides a broad comprehensive approach to understanding the significance of specific challenging or open problems within each discipline. The contributions contained in this book are based on lectures focused on "Challenges and Open Problems in Optimization and Data Science" presented at the Deucalion Summer Institute for Advanced Studies in Optimization, Mathematics, and Data Science in August 2016. . 
650 0 |a Mathematical optimization. 
650 0 |a Production management. 
650 0 |a Software engineering. 
650 0 |a Computer mathematics. 
650 1 4 |a Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26008 
650 2 4 |a Operations Management.  |0 http://scigraph.springernature.com/things/product-market-codes/519000 
650 2 4 |a Software Engineering/Programming and Operating Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/I14002 
650 2 4 |a Computational Mathematics and Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M1400X 
700 1 |a Pardalos, Panos M.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Migdalas, Athanasios.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319991412 
776 0 8 |i Printed edition:  |z 9783319991436 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 141 
856 4 0 |u https://doi.org/10.1007/978-3-319-99142-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)