Embedded Deep Learning Algorithms, Architectures and Circuits for Always-on Neural Network Processing /

This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Moons, Bert (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Bankman, Daniel (http://id.loc.gov/vocabulary/relators/aut), Verhelst, Marian (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03894nam a2200541 4500
001 978-3-319-99223-5
003 DE-He213
005 20191023141949.0
007 cr nn 008mamaa
008 181023s2019 gw | s |||| 0|eng d
020 |a 9783319992235  |9 978-3-319-99223-5 
024 7 |a 10.1007/978-3-319-99223-5  |2 doi 
040 |d GrThAP 
050 4 |a TK7888.4 
072 7 |a TJFC  |2 bicssc 
072 7 |a TEC008010  |2 bisacsh 
072 7 |a TJFC  |2 thema 
082 0 4 |a 621.3815  |2 23 
100 1 |a Moons, Bert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Embedded Deep Learning  |h [electronic resource] :  |b Algorithms, Architectures and Circuits for Always-on Neural Network Processing /  |c by Bert Moons, Daniel Bankman, Marian Verhelst. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVI, 206 p. 124 illus., 92 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1 Embedded Deep Neural Networks -- Chapter 2 Optimized Hierarchical Cascaded Processing -- Chapter 3 Hardware-Algorithm Co-optimizations -- Chapter 4 Circuit Techniques for Approximate Computing -- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing -- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing -- Chapter 7 Conclusions, contributions and future work. 
520 |a This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy - applications, algorithms, hardware architectures, and circuits - supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization's implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts. 
650 0 |a Electronic circuits. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
650 1 4 |a Circuits and Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/T24068 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Electronics and Microelectronics, Instrumentation.  |0 http://scigraph.springernature.com/things/product-market-codes/T24027 
700 1 |a Bankman, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Verhelst, Marian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319992228 
776 0 8 |i Printed edition:  |z 9783319992242 
776 0 8 |i Printed edition:  |z 9783030075774 
856 4 0 |u https://doi.org/10.1007/978-3-319-99223-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)