Embedded Deep Learning Algorithms, Architectures and Circuits for Always-on Neural Network Processing /
This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Έκδοση: | 1st ed. 2019. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Chapter 1 Embedded Deep Neural Networks
- Chapter 2 Optimized Hierarchical Cascaded Processing
- Chapter 3 Hardware-Algorithm Co-optimizations
- Chapter 4 Circuit Techniques for Approximate Computing
- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing
- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing
- Chapter 7 Conclusions, contributions and future work.