Materials Discovery and Design By Means of Data Science and Optimal Learning /

This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the ap...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lookman, Turab (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Eidenbenz, Stephan (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Alexander, Frank (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Barnes, Cris (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Series in Materials Science, 280
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part 1: Learning from Data in Material Science
  • Designing Novel Multifunctional Materials via Inverse Optimization Techniques
  • Quantifying Uncertainties in First Principles Alloy Thermodynamics
  • Forward Modeling of Electron Scattering Modalities for Microstructure Quantification
  • The Potential of Network Analysis Strategies to HEDM Data: Classification of Microstructures and Prediction of Incipient Failure
  • Part 2: Data and Inference
  • Challenges of Diagram extraction and Understanding
  • Integration of Computational Reasoning, Machine Learning, and Crowdsourcing for Accelerating Materials Discovery
  • Computational Creativity for Materials Science
  • Optimal Experimental Design Based on Uncertainty Quantification
  • Part 3: High-Throughput Calculations and Experiments Functionality-Driven Design and Discovery
  • The Use of Proxies and Data for Guiding Materials Synthesis: Examples of Phosphors and Thermoelectrics
  • Big Data from Experiments
  • Data-Driven Approaches to Combinatorial Materials Science
  • Invariant Representations for Robust Materials Prediction
  • Part 4: Data Optimization/Challenges in Analysis of Data for Facilities
  • The MGI Data Infrastructure
  • Is Rigorous Automated Materials Design and Discovery Possible?
  • Improve your Monte Carlo: Learn a Control Variate and Correct it with Stacking
  • X-ray Free Electron Laser Studies of Shock-Driven Deformation and Phase Transitions
  • Coherent Diffraction Imaging Techniques at 3rd and 4th Generation Light Sources
  • 3D Data Challenges from X-ray Synchrotron Tomography
  • Part 5: Interference/HPC/Software Integration
  • Optimal Bayesian Experimental Design: Formulations and New Computational Strategies
  • Optimal Bayesian Inference with Missing Data
  • Applying an Experimental Design Loop to Shape Memory Alloys
  • Big Data Need Big Theory Too
  • Combining Experiments, Simulation and Machine Learning in a Single Materials Platform - A Materials Informatics Approach
  • Rethinking the HPC Programming Environment.