Kähler Immersions of Kähler Manifolds into Complex Space Forms

The aim of this book is to describe Calabi's original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. Calabi's pioneering work, making use of the powerful tool...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Loi, Andrea (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Zedda, Michela (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Lecture Notes of the Unione Matematica Italiana, 23
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03270nam a2200481 4500
001 978-3-319-99483-3
003 DE-He213
005 20191025212349.0
007 cr nn 008mamaa
008 180920s2018 gw | s |||| 0|eng d
020 |a 9783319994833  |9 978-3-319-99483-3 
024 7 |a 10.1007/978-3-319-99483-3  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Loi, Andrea.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Kähler Immersions of Kähler Manifolds into Complex Space Forms  |h [electronic resource] /  |c by Andrea Loi, Michela Zedda. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 100 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 23 
505 0 |a - The Diastasis Function -- Calabi's Criterion -- Homogeneous Kähler manifolds -- Kähler-Einstein Manifolds -- Hartogs Type Domains -- Relatives -- Further Examples and Open Problems. 
520 |a The aim of this book is to describe Calabi's original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. Calabi's pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kähler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a Kähler immersion into another, and to decades of further research on the subject. Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader's understanding. Apart from the section on Kähler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and Kähler geometry. 
650 0 |a Differential geometry. 
650 0 |a Functions of complex variables. 
650 1 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Several Complex Variables and Analytic Spaces.  |0 http://scigraph.springernature.com/things/product-market-codes/M12198 
700 1 |a Zedda, Michela.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319994826 
776 0 8 |i Printed edition:  |z 9783319994840 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 23 
856 4 0 |u https://doi.org/10.1007/978-3-319-99483-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)