Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle

The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capil...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Berti, Massimiliano (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Delort, Jean-Marc (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Lecture Notes of the Unione Matematica Italiana, 24
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03742nam a2200529 4500
001 978-3-319-99486-4
003 DE-He213
005 20191025161152.0
007 cr nn 008mamaa
008 181102s2018 gw | s |||| 0|eng d
020 |a 9783319994864  |9 978-3-319-99486-4 
024 7 |a 10.1007/978-3-319-99486-4  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Berti, Massimiliano.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle  |h [electronic resource] /  |c by Massimiliano Berti, Jean-Marc Delort. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 269 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 24 
520 |a The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capillarity parameters are taken outside an exceptional subset of zero measure. In contrast to the many results known for these equations on the real line, with decaying Cauchy data, one cannot make use of dispersive properties of the linear flow. Instead, a normal forms-based procedure is used, eliminating those contributions to the Sobolev energy that are of lower degree of homogeneity in the solution. Since the water waves equations form a quasi-linear system, the usual normal forms approaches would face the well-known problem of losses of derivatives in the unbounded transformations. To overcome this, after a paralinearization of the capillary-gravity water waves equations, we perform several paradifferential reductions to obtain a diagonal system with constant coefficient symbols, up to smoothing remainders. Then we start with a normal form procedure where the small divisors are compensated by the previous paradifferential regularization. The reversible structure of the water waves equations, and the fact that we seek solutions even in space, guarantees a key cancellation which prevents the growth of the Sobolev norms of the solutions. 
650 0 |a Partial differential equations. 
650 0 |a Fourier analysis. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Functional analysis. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Fourier Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12058 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M1204X 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
700 1 |a Delort, Jean-Marc.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319994857 
776 0 8 |i Printed edition:  |z 9783319994871 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 24 
856 4 0 |u https://doi.org/10.1007/978-3-319-99486-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)