The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of ZB4(S2)

This volume deals with the K-theoretical aspects of the group rings of braid groups of the 2-sphere. The lower algebraic K-theory of the finite subgroups of these groups up to eleven strings is computed using a wide variety of tools. Many of the techniques extend to the general case, and the results...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Guaschi, John (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Juan-Pineda, Daniel (http://id.loc.gov/vocabulary/relators/aut), Millán López, Silvia (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03906nam a2200529 4500
001 978-3-319-99489-5
003 DE-He213
005 20191025212412.0
007 cr nn 008mamaa
008 181103s2018 gw | s |||| 0|eng d
020 |a 9783319994895  |9 978-3-319-99489-5 
024 7 |a 10.1007/978-3-319-99489-5  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Guaschi, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of ZB4(S2)   |h [electronic resource] /  |c by John Guaschi, Daniel Juan-Pineda, Silvia Millán López. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 80 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Introduction -- Lower algebraic K-theory of the finite subgroups of Bn(S²) -- The braid group B4(S²) and the conjugacy classes of its maximal virtually cyclic subgroups -- Lower algebraic K-theory groups of the group ring Z[B4(S²)] -- Appendix A: The fibred isomorphism conjecture -- Appendix B: Braid groups -- References. 
520 |a This volume deals with the K-theoretical aspects of the group rings of braid groups of the 2-sphere. The lower algebraic K-theory of the finite subgroups of these groups up to eleven strings is computed using a wide variety of tools. Many of the techniques extend to the general case, and the results reveal new K-theoretical phenomena with respect to the previous study of other families of groups. The second part of the manuscript focusses on the case of the 4-string braid group of the 2-sphere, which is shown to be hyperbolic in the sense of Gromov. This permits the computation of the infinite maximal virtually cyclic subgroups of this group and their conjugacy classes, and applying the fact that this group satisfies the Fibred Isomorphism Conjecture of Farrell and Jones, leads to an explicit calculation of its lower K-theory. Researchers and graduate students working in K-theory and surface braid groups will constitute the primary audience of the manuscript, particularly those interested in the Fibred Isomorphism Conjecture, and the computation of Nil groups and the lower algebraic K-groups of group rings. The manuscript will also provide a useful resource to researchers who wish to learn the techniques needed to calculate lower algebraic K-groups, and the bibliography brings together a large number of references in this respect. 
650 0 |a Group theory. 
650 0 |a K-theory. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 1 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
650 2 4 |a K-Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11086 
650 2 4 |a Commutative Rings and Algebras.  |0 http://scigraph.springernature.com/things/product-market-codes/M11043 
700 1 |a Juan-Pineda, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Millán López, Silvia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319994888 
776 0 8 |i Printed edition:  |z 9783319994901 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://doi.org/10.1007/978-3-319-99489-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)