The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of ZB4(S2)

This volume deals with the K-theoretical aspects of the group rings of braid groups of the 2-sphere. The lower algebraic K-theory of the finite subgroups of these groups up to eleven strings is computed using a wide variety of tools. Many of the techniques extend to the general case, and the results...

Full description

Bibliographic Details
Main Authors: Guaschi, John (Author, http://id.loc.gov/vocabulary/relators/aut), Juan-Pineda, Daniel (http://id.loc.gov/vocabulary/relators/aut), Millán López, Silvia (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2018.
Edition:1st ed. 2018.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:Full Text via HEAL-Link
Table of Contents:
  • Introduction
  • Lower algebraic K-theory of the finite subgroups of Bn(S²)
  • The braid group B4(S²) and the conjugacy classes of its maximal virtually cyclic subgroups
  • Lower algebraic K-theory groups of the group ring Z[B4(S²)]
  • Appendix A: The fibred isomorphism conjecture
  • Appendix B: Braid groups
  • References.