Uncertainty Quantification and Predictive Computational Science A Foundation for Physical Scientists and Engineers /

This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-conse...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: McClarren, Ryan G. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05711nam a2200553 4500
001 978-3-319-99525-0
003 DE-He213
005 20191029022546.0
007 cr nn 008mamaa
008 181123s2018 gw | s |||| 0|eng d
020 |a 9783319995250  |9 978-3-319-99525-0 
024 7 |a 10.1007/978-3-319-99525-0  |2 doi 
040 |d GrThAP 
050 4 |a QC1-999 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a McClarren, Ryan G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Uncertainty Quantification and Predictive Computational Science  |h [electronic resource] :  |b A Foundation for Physical Scientists and Engineers /  |c by Ryan G. McClarren. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVII, 345 p. 141 illus., 99 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I Fundamentals -- Introduction -- Probability and Statistics Preliminaries -- Input Parameter Distributions -- Part II Local Sensitivity Analysis -- Derivative Approximations -- Regression Approximations -- Adjoint-based Local Sensitivity Analysis -- Part III Parametric Uncertainty Quantification -- From Sensitivity Analysis to UQ -- Sampling-Based UQ -- Reliability Methods -- Polynomial Chaos Methods -- Part IV Predictive Science -- Emulators and Surrogate Models -- Reduced Order Models -- Predictive Models -- Epistemic Uncertainties -- Appendices -- A. A cookbook of distributions. 
520 |a This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences.Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying local sensitivity analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in R and python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and first year graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform. Organizes interdisciplinary topics of uncertainty quantification into a single teaching text Reviews the fundamentals of probability and statistics Guides the transition from merely performing calculations to making confident predictions Builds readers' confidence in the validity of their simulations Illustrates concepts with real-world examples and models from the physical sciences and engineering Includes R and python code, enabling readers to perform the analysis. 
650 0 |a Physics. 
650 0 |a Computer mathematics. 
650 0 |a Statistics . 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical physics. 
650 0 |a Computer simulation. 
650 1 4 |a Numerical and Computational Physics, Simulation.  |0 http://scigraph.springernature.com/things/product-market-codes/P19021 
650 2 4 |a Computational Science and Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/M14026 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
650 2 4 |a Mathematical and Computational Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T11006 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M13120 
650 2 4 |a Simulation and Modeling.  |0 http://scigraph.springernature.com/things/product-market-codes/I19000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319995243 
776 0 8 |i Printed edition:  |z 9783319995267 
856 4 0 |u https://doi.org/10.1007/978-3-319-99525-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)