Uncertainty Quantification and Predictive Computational Science A Foundation for Physical Scientists and Engineers /
This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-conse...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Part I Fundamentals
- Introduction
- Probability and Statistics Preliminaries
- Input Parameter Distributions
- Part II Local Sensitivity Analysis
- Derivative Approximations
- Regression Approximations
- Adjoint-based Local Sensitivity Analysis
- Part III Parametric Uncertainty Quantification
- From Sensitivity Analysis to UQ
- Sampling-Based UQ
- Reliability Methods
- Polynomial Chaos Methods
- Part IV Predictive Science
- Emulators and Surrogate Models
- Reduced Order Models
- Predictive Models
- Epistemic Uncertainties
- Appendices
- A. A cookbook of distributions.