Uncertainty Quantification and Predictive Computational Science A Foundation for Physical Scientists and Engineers /

This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-conse...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: McClarren, Ryan G. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I Fundamentals
  • Introduction
  • Probability and Statistics Preliminaries
  • Input Parameter Distributions
  • Part II Local Sensitivity Analysis
  • Derivative Approximations
  • Regression Approximations
  • Adjoint-based Local Sensitivity Analysis
  • Part III Parametric Uncertainty Quantification
  • From Sensitivity Analysis to UQ
  • Sampling-Based UQ
  • Reliability Methods
  • Polynomial Chaos Methods
  • Part IV Predictive Science
  • Emulators and Surrogate Models
  • Reduced Order Models
  • Predictive Models
  • Epistemic Uncertainties
  • Appendices
  • A. A cookbook of distributions.