Pseudo-Regularly Varying Functions and Generalized Renewal Processes

One of the main aims of this book is to exhibit some fruitful links between renewal theory and regular variation of functions. Applications of renewal processes play a key role in actuarial and financial mathematics as well as in engineering, operations research and other fields of applied mathemati...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Buldygin, Valeriĭ V. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Indlekofer, Karl-Heinz (http://id.loc.gov/vocabulary/relators/aut), Klesov, Oleg I. (http://id.loc.gov/vocabulary/relators/aut), Steinebach, Josef G. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Probability Theory and Stochastic Modelling, 91
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05009nam a2200565 4500
001 978-3-319-99537-3
003 DE-He213
005 20191025111655.0
007 cr nn 008mamaa
008 181012s2018 gw | s |||| 0|eng d
020 |a 9783319995373  |9 978-3-319-99537-3 
024 7 |a 10.1007/978-3-319-99537-3  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Buldygin, Valeriĭ V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Pseudo-Regularly Varying Functions and Generalized Renewal Processes  |h [electronic resource] /  |c by Valeriĭ V. Buldygin, Karl-Heinz Indlekofer, Oleg I. Klesov, Josef G. Steinebach. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXII, 482 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability Theory and Stochastic Modelling,  |x 2199-3130 ;  |v 91 
505 0 |a Preface -- Equivalence of limit theorems for sums of random variables and renewal processes -- Almost sure convergence of renewal processes -- Generalizations of regularly varying functions -- Properties of absolutely continuous functions -- Non-degenerate groups of regular points -- Karamata's theorem for integrals -- Asymptotically quasi-inverse functions -- Generalized renewal processes -- Asymptotic behavior of solutions of stochastic differential equations -- Asymptotics for renewal processes constructed from multi-indexed random walks -- Spitzer series and regularly varying functions. - Appendix: Some Auxiliary Results -- References -- Index. 
520 |a One of the main aims of this book is to exhibit some fruitful links between renewal theory and regular variation of functions. Applications of renewal processes play a key role in actuarial and financial mathematics as well as in engineering, operations research and other fields of applied mathematics. On the other hand, regular variation of functions is a property that features prominently in many fields of mathematics. The structure of the book reflects the historical development of the authors' research work and approach - first some applications are discussed, after which a basic theory is created, and finally further applications are provided. The authors present a generalized and unified approach to the asymptotic behavior of renewal processes, involving cases of dependent inter-arrival times. This method works for other important functionals as well, such as first and last exit times or sojourn times (also under dependencies), and it can be used to solve several other problems. For example, various applications in function analysis concerning Abelian and Tauberian theorems can be studied as well as those in studies of the asymptotic behavior of solutions of stochastic differential equations. The classes of functions that are investigated and used in a probabilistic context extend the well-known Karamata theory of regularly varying functions and thus are also of interest in the theory of functions. The book provides a rigorous treatment of the subject and may serve as an introduction to the field. It is aimed at researchers and students working in probability, the theory of stochastic processes, operations research, mathematical statistics, the theory of functions, analytic number theory and complex analysis, as well as economists with a mathematical background. Readers should have completed introductory courses in analysis and probability theory. . 
650 0 |a Probabilities. 
650 0 |a Functions of real variables. 
650 0 |a Differential equations. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Real Functions.  |0 http://scigraph.springernature.com/things/product-market-codes/M12171 
650 2 4 |a Ordinary Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12147 
700 1 |a Indlekofer, Karl-Heinz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Klesov, Oleg I.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Steinebach, Josef G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319995366 
776 0 8 |i Printed edition:  |z 9783319995380 
776 0 8 |i Printed edition:  |z 9783030076061 
830 0 |a Probability Theory and Stochastic Modelling,  |x 2199-3130 ;  |v 91 
856 4 0 |u https://doi.org/10.1007/978-3-319-99537-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)