Spatiotemporal Frequent Pattern Mining from Evolving Region Trajectories

This SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Aydin, Berkay (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Angryk, Rafal. A. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03058nam a2200505 4500
001 978-3-319-99873-2
003 DE-He213
005 20191025032501.0
007 cr nn 008mamaa
008 181015s2018 gw | s |||| 0|eng d
020 |a 9783319998732  |9 978-3-319-99873-2 
024 7 |a 10.1007/978-3-319-99873-2  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UT  |2 bicssc 
072 7 |a COM069000  |2 bisacsh 
072 7 |a UT  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Aydin, Berkay.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spatiotemporal Frequent Pattern Mining from Evolving Region Trajectories  |h [electronic resource] /  |c by Berkay Aydin, Rafal. A Angryk. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 106 p. 33 illus., 32 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
520 |a This SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the focus of this book is to provide readers insight into the mining algorithms from evolving regions, the authors also discuss data management for spatiotemporal trajectories, which has become increasingly important with the increasing volume of trajectories. This brief describes state-of-the-art knowledge discovery techniques to computer science graduate students who are interested in spatiotemporal data mining, as well as researchers/professionals, who deal with advanced spatiotemporal data analysis in their fields. These fields include GIS-experts, meteorologists, epidemiologists, neurologists, and solar physicists. 
650 0 |a Computers. 
650 0 |a Geographical information systems. 
650 0 |a Regional economics. 
650 0 |a Spatial economics. 
650 1 4 |a Information Systems and Communication Service.  |0 http://scigraph.springernature.com/things/product-market-codes/I18008 
650 2 4 |a Geographical Information Systems/Cartography.  |0 http://scigraph.springernature.com/things/product-market-codes/J13000 
650 2 4 |a Regional/Spatial Science.  |0 http://scigraph.springernature.com/things/product-market-codes/W49000 
700 1 |a Angryk, Rafal. A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319998725 
776 0 8 |i Printed edition:  |z 9783319998749 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u https://doi.org/10.1007/978-3-319-99873-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)