Uncertain Projective Geometry Statistical Reasoning for Polyhedral Object Reconstruction /

Algebraic projective geometry, with its multilinear relations and its embedding into Grassmann-Cayley algebra, has become the basic representation of multiple view geometry, resulting in deep insights into the algebraic structure of geometric relations, as well as in efficient and versatile algorith...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Heuel, Stephan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2004.
Σειρά:Lecture Notes in Computer Science, 3008
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03194nam a22005775i 4500
001 978-3-540-24656-5
003 DE-He213
005 20151204162320.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540246565  |9 978-3-540-24656-5 
024 7 |a 10.1007/b97201  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Heuel, Stephan.  |e author. 
245 1 0 |a Uncertain Projective Geometry  |h [electronic resource] :  |b Statistical Reasoning for Polyhedral Object Reconstruction /  |c by Stephan Heuel. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2004. 
300 |a XVIII, 210 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3008 
505 0 |a 1 Introduction -- 2 Representation of Geometric Entities and Transformations -- 3 Geometric Reasoning Using Projective Geometry -- 4 Statistical Geometric Reasoning -- 5 Polyhedral Object Reconstruction -- 6 Conclusions -- A Notation -- B Linear Algebra -- C Statistics. 
520 |a Algebraic projective geometry, with its multilinear relations and its embedding into Grassmann-Cayley algebra, has become the basic representation of multiple view geometry, resulting in deep insights into the algebraic structure of geometric relations, as well as in efficient and versatile algorithms for computer vision and image analysis. This book provides a coherent integration of algebraic projective geometry and spatial reasoning under uncertainty with applications in computer vision. Beyond systematically introducing the theoretical foundations from geometry and statistics and clear rules for performing geometric reasoning under uncertainty, the author provides a collection of detailed algorithms. The book addresses researchers and advanced students interested in algebraic projective geometry for image analysis, in statistical representation of objects and transformations, or in generic tools for testing and estimating within the context of geometric multiple-view analysis. 
650 0 |a Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Computer Graphics. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540220299 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3008 
856 4 0 |u http://dx.doi.org/10.1007/b97201  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)