Primality Testing in Polynomial Time From Randomized Algorithms to "PRIMES Is in P" /

On August 6, 2002,a paper with the title “PRIMES is in P”, by M. Agrawal, N. Kayal, and N. Saxena, appeared on the website of the Indian Institute of Technology at Kanpur, India. In this paper it was shown that the “primality problem”hasa“deterministic algorithm” that runs in “polynomial time”. Find...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dietzfelbinger, Martin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2004.
Σειρά:Lecture Notes in Computer Science, 3000
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03742nam a22005775i 4500
001 978-3-540-25933-6
003 DE-He213
005 20151204163829.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540259336  |9 978-3-540-25933-6 
024 7 |a 10.1007/b12334  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Dietzfelbinger, Martin.  |e author. 
245 1 0 |a Primality Testing in Polynomial Time  |h [electronic resource] :  |b From Randomized Algorithms to "PRIMES Is in P" /  |c by Martin Dietzfelbinger. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2004. 
300 |a X, 150 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3000 
505 0 |a 1. Introduction: Efficient Primality Testing -- 2. Algorithms for Numbers and Their Complexity -- 3. Fundamentals from Number Theory -- 4. Basics from Algebra: Groups, Rings, and Fields -- 5. The Miller-Rabin Test -- 6. The Solovay-Strassen Test -- 7. More Algebra: Polynomials and Fields -- 8. Deterministic Primality Testing in Polynomial Time -- A. Appendix. 
520 |a On August 6, 2002,a paper with the title “PRIMES is in P”, by M. Agrawal, N. Kayal, and N. Saxena, appeared on the website of the Indian Institute of Technology at Kanpur, India. In this paper it was shown that the “primality problem”hasa“deterministic algorithm” that runs in “polynomial time”. Finding out whether a given number n is a prime or not is a problem that was formulated in ancient times, and has caught the interest of mathema- ciansagainandagainfor centuries. Onlyinthe 20thcentury,with theadvent of cryptographic systems that actually used large prime numbers, did it turn out to be of practical importance to be able to distinguish prime numbers and composite numbers of signi?cant size. Readily, algorithms were provided that solved the problem very e?ciently and satisfactorily for all practical purposes, and provably enjoyed a time bound polynomial in the number of digits needed to write down the input number n. The only drawback of these algorithms is that they use “randomization” — that means the computer that carries out the algorithm performs random experiments, and there is a slight chance that the outcome might be wrong, or that the running time might not be polynomial. To ?nd an algorithmthat gets by without rand- ness, solves the problem error-free, and has polynomial running time had been an eminent open problem in complexity theory for decades when the paper by Agrawal, Kayal, and Saxena hit the web. 
650 0 |a Mathematics. 
650 0 |a Data encryption (Computer science). 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Mathematical statistics. 
650 0 |a Algebra. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebra. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Data Encryption. 
650 2 4 |a Probability and Statistics in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540403449 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3000 
856 4 0 |u http://dx.doi.org/10.1007/b12334  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)