Multiple Classifier Systems 5th International Workshop, MCS 2004, Cagliari, Italy, June 9-11, 2004. Proceedings /

The fusion of di?erent information sourcesis a persistent and intriguing issue. It hasbeenaddressedforcenturiesinvariousdisciplines,includingpoliticalscience, probability and statistics, system reliability assessment, computer science, and distributed detection in communications. Early seminal work...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Roli, Fabio (Επιμελητής έκδοσης), Kittler, Josef (Επιμελητής έκδοσης), Windeatt, Terry (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2004.
Σειρά:Lecture Notes in Computer Science, 3077
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Invited Papers
  • Classifier Ensembles for Changing Environments
  • A Generic Sensor Fusion Problem: Classification and Function Estimation
  • Bagging and Boosting
  • AveBoost2: Boosting for Noisy Data
  • Bagging Decision Multi-trees
  • Learn++.MT: A New Approach to Incremental Learning
  • Beyond Boosting: Recursive ECOC Learning Machines
  • Exact Bagging with k-Nearest Neighbour Classifiers
  • Combination Methods
  • Yet Another Method for Combining Classifiers Outputs: A Maximum Entropy Approach
  • Combining One-Class Classifiers to Classify Missing Data
  • Combining Kernel Information for Support Vector Classification
  • Combining Classifiers Using Dependency-Based Product Approximation with Bayes Error Rate
  • Combining Dissimilarity-Based One-Class Classifiers
  • A Modular System for the Classification of Time Series Data
  • A Probabilistic Model Using Information Theoretic Measures for Cluster Ensembles
  • Classifier Fusion Using Triangular Norms
  • Dynamic Integration of Regression Models
  • Dynamic Classifier Selection by Adaptive k-Nearest-Neighbourhood Rule
  • Design Methods
  • Spectral Measure for Multi-class Problems
  • The Relationship between Classifier Factorisation and Performance in Stochastic Vector Quantisation
  • A Method for Designing Cost-Sensitive ECOC
  • Building Graph-Based Classifier Ensembles by Random Node Selection
  • A Comparison of Ensemble Creation Techniques
  • Multiple Classifiers System for Reducing Influences of Atypical Observations
  • Sharing Training Patterns among Multiple Classifiers
  • Performance Analysis
  • First Experiments on Ensembles of Radial Basis Functions
  • Random Aggregated and Bagged Ensembles of SVMs: An Empirical Bias–Variance Analysis
  • Building Diverse Classifier Outputs to Evaluate the Behavior of Combination Methods: The Case of Two Classifiers
  • An Empirical Comparison of Hierarchical vs. Two-Level Approaches to Multiclass Problems
  • Experiments on Ensembles with Missing and Noisy Data
  • Applications
  • Induced Decision Fusion in Automated Sign Language Interpretation: Using ICA to Isolate the Underlying Components of Sign
  • Ensembles of Classifiers Derived from Multiple Prototypes and Their Application to Handwriting Recognition
  • Network Intrusion Detection by a Multi-stage Classification System
  • Application of Breiman’s Random Forest to Modeling Structure-Activity Relationships of Pharmaceutical Molecules
  • Experimental Study on Multiple LDA Classifier Combination for High Dimensional Data Classification
  • Physics-Based Decorrelation of Image Data for Decision Level Fusion in Face Verification
  • High Security Fingerprint Verification by Perceptron-Based Fusion of Multiple Matchers
  • Second Guessing a Commercial’Black Box’ Classifier by an’In House’ Classifier: Serial Classifier Combination in a Speech Recognition Application.