Complex Geometry An Introduction /

Complex geometry studies (compact) complex manifolds. It discusses algebraic as well as metric aspects. The subject is on the crossroad of algebraic and differential geometry. Recent developments in string theory have made it an highly attractive area, both for mathematicians and theoretical physici...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Huybrechts, Daniel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02252nam a22004575i 4500
001 978-3-540-26687-7
003 DE-He213
005 20151125021855.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540266877  |9 978-3-540-26687-7 
024 7 |a 10.1007/b137952  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Huybrechts, Daniel.  |e author. 
245 1 0 |a Complex Geometry  |h [electronic resource] :  |b An Introduction /  |c by Daniel Huybrechts. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XII, 309 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Local Theory -- Complex Manifolds -- Kähler Manifolds -- Vector Bundles -- Applications of Cohomology -- Deformations of Complex Structures. 
520 |a Complex geometry studies (compact) complex manifolds. It discusses algebraic as well as metric aspects. The subject is on the crossroad of algebraic and differential geometry. Recent developments in string theory have made it an highly attractive area, both for mathematicians and theoretical physicists. The author’s goal is to provide an easily accessible introduction to the subject. The book contains detailed accounts of the basic concepts and the many exercises illustrate the theory. Appendices to various chapters allow an outlook to recent research directions. Daniel Huybrechts is currently Professor of Mathematics at the University Denis Diderot in Paris. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Functions of a Complex Variable. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540212904 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/b137952  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)