Dynamics Beyond Uniform Hyperbolicity A Global Geometric and Probabilistic Perspective /

In broad terms, the goal of dynamics is to describe the long-term evolution of systems for which an "infinitesimal" evolution rule, such as a differential equation or the iteration of a map, is known. The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unif...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bonatti, Christian (Συγγραφέας), Díaz, Lorenzo J. (Συγγραφέας), Viana, Marcelo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Encyclopaedia of Mathematical Sciences, Mathematical Physics III, 102
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03683nam a22005415i 4500
001 978-3-540-26844-4
003 DE-He213
005 20151204175701.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540268444  |9 978-3-540-26844-4 
024 7 |a 10.1007/b138174  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Bonatti, Christian.  |e author. 
245 1 0 |a Dynamics Beyond Uniform Hyperbolicity  |h [electronic resource] :  |b A Global Geometric and Probabilistic Perspective /  |c by Christian Bonatti, Lorenzo J. Díaz, Marcelo Viana. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XVIII, 384 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences, Mathematical Physics III,  |x 0938-0396 ;  |v 102 
505 0 |a Hyperbolicity and Beyond -- One-Dimensional Dynamics -- Homoclinic Tangencies -- Hénon-like Dynamics -- Non-Critical Dynamics and Hyperbolicity -- Heterodimensional Cycles and Blenders -- Robust Transitivity -- Stable Ergodicity -- Robust Singular Dynamics -- Generic Diffeomorphisms -- SRB Measures and Gibbs States -- Lyapunov Exponents. 
520 |a In broad terms, the goal of dynamics is to describe the long-term evolution of systems for which an "infinitesimal" evolution rule, such as a differential equation or the iteration of a map, is known. The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unified important developments and led to a remarkably successful theory for a large class of systems: uniformly hyperbolic systems often exhibit complicated evolution which, nevertheless, is now rather well understood, both geometrically and statistically. Another revolution has been taking place in the last couple of decades, as one tries to build a global theory for "most" dynamical systems, recovering as much as possible of the conclusions of the uniformly hyperbolic case, in great generality. This book aims to put such recent developments in a unified perspective, and to point out open problems and likely directions for further progress. It is aimed at researchers, both young and senior, willing to get a quick, yet broad, view of this part of dynamics. Main ideas, methods, and results are discussed, at variable degrees of depth, with references to the original works for details and complementary information. The 12 chapters are organised so as to convey a global perspective of this field, but they have been kept rather independent, to allow direct access to specific topics. The five appendices cover important complementary material. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Analysis. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Díaz, Lorenzo J.  |e author. 
700 1 |a Viana, Marcelo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540220664 
830 0 |a Encyclopaedia of Mathematical Sciences, Mathematical Physics III,  |x 0938-0396 ;  |v 102 
856 4 0 |u http://dx.doi.org/10.1007/b138174  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)