Classification and Modeling with Linguistic Information Granules Advanced Approaches to Linguistic Data Mining /

Many approaches have already been proposed for classification and modeling in the literature. These approaches are usually based on mathematical mod­ els. Computer systems can easily handle mathematical models even when they are complicated and nonlinear (e.g., neural networks). On the other hand, i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ishibuchi, Hisao (Συγγραφέας), Nakashima, Tomoharu (Συγγραφέας), Nii, Manabu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Advanced Information Processing
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03611nam a22005175i 4500
001 978-3-540-26875-8
003 DE-He213
005 20151204160551.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540268758  |9 978-3-540-26875-8 
024 7 |a 10.1007/b138232  |2 doi 
040 |d GrThAP 
050 4 |a P98-98.5 
072 7 |a CFX  |2 bicssc 
072 7 |a LAN009000  |2 bisacsh 
072 7 |a COM018000  |2 bisacsh 
082 0 4 |a 410.285  |2 23 
100 1 |a Ishibuchi, Hisao.  |e author. 
245 1 0 |a Classification and Modeling with Linguistic Information Granules  |h [electronic resource] :  |b Advanced Approaches to Linguistic Data Mining /  |c by Hisao Ishibuchi, Tomoharu Nakashima, Manabu Nii. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XII, 308 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information Processing 
505 0 |a Linguistic Information Granules -- Pattern Classification with Linguistic Rules -- Learning of Linguistic Rules -- Input Selection and Rule Selection -- Genetics-Based Machine Learning -- Multi-Objective Design of Linguistic Models -- Comparison of Linguistic Discretization with Interval Discretization -- Modeling with Linguistic Rules -- Design of Compact Linguistic Models -- Linguistic Rules with Consequent Real Numbers -- Handling of Linguistic Rules in Neural Networks -- Learning of Neural Networks from Linguistic Rules -- Linguistic Rule Extraction from Neural Networks -- Modeling of Fuzzy Input—Output Relations. 
520 |a Many approaches have already been proposed for classification and modeling in the literature. These approaches are usually based on mathematical mod­ els. Computer systems can easily handle mathematical models even when they are complicated and nonlinear (e.g., neural networks). On the other hand, it is not always easy for human users to intuitively understand mathe­ matical models even when they are simple and linear. This is because human information processing is based mainly on linguistic knowledge while com­ puter systems are designed to handle symbolic and numerical information. A large part of our daily communication is based on words. We learn from various media such as books, newspapers, magazines, TV, and the Inter­ net through words. We also communicate with others through words. While words play a central role in human information processing, linguistic models are not often used in the fields of classification and modeling. If there is no goal other than the maximization of accuracy in classification and model­ ing, mathematical models may always be preferred to linguistic models. On the other hand, linguistic models may be chosen if emphasis is placed on interpretability. 
650 0 |a Linguistics. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Computational linguistics. 
650 1 4 |a Linguistics. 
650 2 4 |a Computational Linguistics. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Models and Principles. 
700 1 |a Nakashima, Tomoharu.  |e author. 
700 1 |a Nii, Manabu.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540207672 
830 0 |a Advanced Information Processing 
856 4 0 |u http://dx.doi.org/10.1007/b138232  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)