Comprehensive Mathematics for Computer Scientists 2 Calculus and ODEs, Splines, Probability, Fourier and Wavelet Theory, Fractals and Neural Networks, Categories and Lambda Calculus /

This second volume of a comprehensive tour through mathematical core subjects for computer scientists completes the ?rst volume in two - gards: Part III ?rst adds topology, di?erential, and integral calculus to the t- ics of sets, graphs, algebra, formal logic, machines, and linear geometry, of volu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mazzola, Guerino (Συγγραφέας), Milmeister, Gérard (Συγγραφέας), Weissmann, Jody (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03431nam a22005415i 4500
001 978-3-540-26937-3
003 DE-He213
005 20151123194616.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540269373  |9 978-3-540-26937-3 
024 7 |a 10.1007/b138337  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a PBD  |2 bicssc 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Mazzola, Guerino.  |e author. 
245 1 0 |a Comprehensive Mathematics for Computer Scientists 2  |h [electronic resource] :  |b Calculus and ODEs, Splines, Probability, Fourier and Wavelet Theory, Fractals and Neural Networks, Categories and Lambda Calculus /  |c by Guerino Mazzola, Gérard Milmeister, Jody Weissmann. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a X, 355 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Topology and Calculus -- Limits and Topology -- Differentiability -- Inverse and Implicit Functions -- Integration -- The Fundamental Theorem of Calculus and Fubini’s Theorem -- Vector Fields -- Fixpoints -- Main Theorem of ODEs -- Third Advanced Topic -- Selected Higher Subjects -- Categories -- Splines -- Fourier Theory -- Wavelets -- Fractals -- Neural Networks -- Probability Theory -- Lambda Calculus. 
520 |a This second volume of a comprehensive tour through mathematical core subjects for computer scientists completes the ?rst volume in two - gards: Part III ?rst adds topology, di?erential, and integral calculus to the t- ics of sets, graphs, algebra, formal logic, machines, and linear geometry, of volume 1. With this spectrum of fundamentals in mathematical e- cation, young professionals should be able to successfully attack more involved subjects, which may be relevant to the computational sciences. In a second regard, the end of part III and part IV add a selection of more advanced topics. In view of the overwhelming variety of mathematical approaches in the computational sciences, any selection, even the most empirical, requires a methodological justi?cation. Our primary criterion has been the search for harmonization and optimization of thematic - versity and logical coherence. This is why we have, for instance, bundled such seemingly distant subjects as recursive constructions, ordinary d- ferential equations, and fractals under the unifying perspective of c- traction theory. 
650 0 |a Computer science. 
650 0 |a Mathematical logic. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical Logic and Formal Languages. 
700 1 |a Milmeister, Gérard.  |e author. 
700 1 |a Weissmann, Jody.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540208617 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/b138337  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)