Field Arithmetic

Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar mea...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fried, Michael D. (Συγγραφέας), Jarden, Moshe (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Έκδοση:Second Edition.
Σειρά:A Series of Modern Surveys in Mathematics ; 11
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04322nam a22005895i 4500
001 978-3-540-26949-6
003 DE-He213
005 20151116132550.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540269496  |9 978-3-540-26949-6 
024 7 |a 10.1007/b138352  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Fried, Michael D.  |e author. 
245 1 0 |a Field Arithmetic  |h [electronic resource] /  |c by Michael D. Fried, Moshe Jarden. 
246 3 |a Revised and Enlarged by Moshe Jarden 
250 |a Second Edition. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XXIII, 780 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a A Series of Modern Surveys in Mathematics ;  |v 11 
505 0 |a Infinite Galois Theory and Profinite Groups -- Valuations and Linear Disjointness -- Algebraic Function Fields of One Variable -- The Riemann Hypothesis for Function Fields -- Plane Curves -- The Chebotarev Density Theorem -- Ultraproducts -- Decision Procedures -- Algebraically Closed Fields -- Elements of Algebraic Geometry -- Pseudo Algebraically Closed Fields -- Hilbertian Fields -- The Classical Hilbertian Fields -- Nonstandard Structures -- Nonstandard Approach to Hilbert’s Irreducibility Theorem -- Galois Groups over Hilbertian Fields -- Free Profinite Groups -- The Haar Measure -- Effective Field Theory and Algebraic Geometry -- The Elementary Theory of e-Free PAC Fields -- Problems of Arithmetical Geometry -- Projective Groups and Frattini Covers -- PAC Fields and Projective Absolute Galois Groups -- Frobenius Fields -- Free Profinite Groups of Infinite Rank -- Random Elements in Profinite Groups -- Omega-free PAC Fields -- Undecidability -- Algebraically Closed Fields with Distinguished Automorphisms -- Galois Stratification -- Galois Stratification over Finite Fields -- Problems of Field Arithmetic. 
520 |a Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)? 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Field theory (Physics). 
650 0 |a Geometry. 
650 0 |a Mathematical logic. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Number Theory. 
700 1 |a Jarden, Moshe.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540228110 
830 0 |a A Series of Modern Surveys in Mathematics ;  |v 11 
856 4 0 |u http://dx.doi.org/10.1007/b138352  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)