Field Arithmetic
Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar mea...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2005.
|
Έκδοση: | Second Edition. |
Σειρά: | A Series of Modern Surveys in Mathematics ;
11 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Infinite Galois Theory and Profinite Groups
- Valuations and Linear Disjointness
- Algebraic Function Fields of One Variable
- The Riemann Hypothesis for Function Fields
- Plane Curves
- The Chebotarev Density Theorem
- Ultraproducts
- Decision Procedures
- Algebraically Closed Fields
- Elements of Algebraic Geometry
- Pseudo Algebraically Closed Fields
- Hilbertian Fields
- The Classical Hilbertian Fields
- Nonstandard Structures
- Nonstandard Approach to Hilbert’s Irreducibility Theorem
- Galois Groups over Hilbertian Fields
- Free Profinite Groups
- The Haar Measure
- Effective Field Theory and Algebraic Geometry
- The Elementary Theory of e-Free PAC Fields
- Problems of Arithmetical Geometry
- Projective Groups and Frattini Covers
- PAC Fields and Projective Absolute Galois Groups
- Frobenius Fields
- Free Profinite Groups of Infinite Rank
- Random Elements in Profinite Groups
- Omega-free PAC Fields
- Undecidability
- Algebraically Closed Fields with Distinguished Automorphisms
- Galois Stratification
- Galois Stratification over Finite Fields
- Problems of Field Arithmetic.