Projective Duality and Homogeneous Spaces

Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the ap...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tevelev, Evgueni A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups IV, 133
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03125nam a22005415i 4500
001 978-3-540-26957-1
003 DE-He213
005 20151204153410.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540269571  |9 978-3-540-26957-1 
024 7 |a 10.1007/b138367  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Tevelev, Evgueni A.  |e author. 
245 1 0 |a Projective Duality and Homogeneous Spaces  |h [electronic resource] /  |c by Evgueni A. Tevelev. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XIV, 250 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups IV,  |x 0938-0396 ;  |v 133 
505 0 |a to Projective Duality -- Actions with Finitely Many Orbits -- Local Calculations -- Projective Constructions -- Vector Bundles Methods -- Degree of the Dual Variety -- Varieties with Positive Defect -- Dual Varieties of Homogeneous Spaces -- Self-dual Varieties -- Singularities of Dual Varieties. 
520 |a Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Differential geometry. 
650 0 |a Topology. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Topology. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540228981 
830 0 |a Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups IV,  |x 0938-0396 ;  |v 133 
856 4 0 |u http://dx.doi.org/10.1007/b138367  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)