Computational Ergodic Theory

Ergodic theory is hard to study because it is based on measure theory, which is a technically difficult subject to master for ordinary students, especially for physics majors. Many of the examples are introduced from a different perspective than in other books and theoretical ideas can be gradually...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Choe, Geon Ho (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Algorithms and Computation in Mathematics, 13
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03154nam a22005175i 4500
001 978-3-540-27305-9
003 DE-He213
005 20151204174955.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540273059  |9 978-3-540-27305-9 
024 7 |a 10.1007/b138894  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Choe, Geon Ho.  |e author. 
245 1 0 |a Computational Ergodic Theory  |h [electronic resource] /  |c by Geon Ho Choe. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XX, 453 p. 250 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms and Computation in Mathematics,  |x 1431-1550 ;  |v 13 
505 0 |a Prerequisites -- Invariant Measures -- The Birkhoff Ergodic Theorem -- The Central Limit Theorem -- More on Ergodicity -- Homeomorphisms of the Circle -- Mod 2 Uniform Distribution -- Entropy -- The Lyapunov Exponent: One-Dimensional Case -- The Lyapunov Exponent: Multidimensional Case -- Stable and Unstable Manifolds -- Recurrence and Entropy -- Recurrence and Dimension -- Data Compression. 
520 |a Ergodic theory is hard to study because it is based on measure theory, which is a technically difficult subject to master for ordinary students, especially for physics majors. Many of the examples are introduced from a different perspective than in other books and theoretical ideas can be gradually absorbed while doing computer experiments. Theoretically less prepared students can appreciate the deep theorems by doing various simulations. The computer experiments are simple but they have close ties with theoretical implications. Even the researchers in the field can benefit by checking their conjectures, which might have been regarded as unrealistic to be programmed easily, against numerical output using some of the ideas in the book. One last remark: The last chapter explains the relation between entropy and data compression, which belongs to information theory and not to ergodic theory. It will help students to gain an understanding of the digital technology that has shaped the modern information society. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540231219 
830 0 |a Algorithms and Computation in Mathematics,  |x 1431-1550 ;  |v 13 
856 4 0 |u http://dx.doi.org/10.1007/b138894  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)