Measurement Uncertainties in Science and Technology

At the turn of the 19th century, Carl Friedrich Gauß founded error calculus by predicting the then unknown position of the planet Ceres. Ever since, error calculus has occupied a place at the heart of science. In this book, Grabe illustrates the breakdown of traditional error calculus in the face of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grabe, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02725nam a22004455i 4500
001 978-3-540-27319-6
003 DE-He213
005 20151204180419.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540273196  |9 978-3-540-27319-6 
024 7 |a 10.1007/b138915  |2 doi 
040 |d GrThAP 
050 4 |a T50 
072 7 |a PDDM  |2 bicssc 
072 7 |a SCI068000  |2 bisacsh 
082 0 4 |a 530.8  |2 23 
100 1 |a Grabe, Michael.  |e author. 
245 1 0 |a Measurement Uncertainties in Science and Technology  |h [electronic resource] /  |c by Michael Grabe. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XI, 269 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Characterization, Combination and Propagation of Errors -- Basic Ideas of Measurement -- Formalization of Measuring Processes -- Densities of Normal Parent Distributions -- Estimators and Their Expectations -- Combination of Measurement Errors -- Propagation of Measurement Errors -- Least Squares Adjustment -- Least Squares Formalism -- Consequences of Systematic Errors -- Uncertainties of Least Squares Estimators -- Special Linear and Linearized Systems -- Systems with Two Parameters -- Systems with Three Parameters -- Special Metrology Systems. 
520 |a At the turn of the 19th century, Carl Friedrich Gauß founded error calculus by predicting the then unknown position of the planet Ceres. Ever since, error calculus has occupied a place at the heart of science. In this book, Grabe illustrates the breakdown of traditional error calculus in the face of modern measurement techniques. Revising Gauß’ error calculus ab initio, he treats random and unknown systematic errors on an equal footing from the outset. Furthermore, Grabe also proposes what may be called well defined measuring conditions, a prerequisite for defining confidence intervals that are consistent with basic statistical concepts. The resulting measurement uncertainties are as robust and reliable as required by modern-day science, engineering and technology. 
650 0 |a Physics. 
650 0 |a Physical measurements. 
650 0 |a Measurement. 
650 0 |a Engineering. 
650 1 4 |a Physics. 
650 2 4 |a Measurement Science and Instrumentation. 
650 2 4 |a Engineering, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540209447 
856 4 0 |u http://dx.doi.org/10.1007/b138915  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)