Lie Algebras and Algebraic Groups

The theory of Lie algebras and algebraic groups has been an area of active research in the last 50 years. It intervenes in many different areas of mathematics: for example invariant theory, Poisson geometry, harmonic analysis, mathematical physics. The aim of this book is to assemble in a single vol...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Tauvel, Patrice (Συγγραφέας), Yu, Rupert W. T. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03505nam a22005655i 4500
001 978-3-540-27427-8
003 DE-He213
005 20151204141327.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540274278  |9 978-3-540-27427-8 
024 7 |a 10.1007/b139060  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Tauvel, Patrice.  |e author. 
245 1 0 |a Lie Algebras and Algebraic Groups  |h [electronic resource] /  |c by Patrice Tauvel, Rupert W. T. Yu. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XVI, 656 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Results on topological spaces -- Rings and modules -- Integral extensions -- Factorial rings -- Field extensions -- Finitely generated algebras -- Gradings and filtrations -- Inductive limits -- Sheaves of functions -- Jordan decomposition and some basic results on groups -- Algebraic sets -- Prevarieties and varieties -- Projective varieties -- Dimension -- Morphisms and dimension -- Tangent spaces -- Normal varieties -- Root systems -- Lie algebras -- Semisimple and reductive Lie algebras -- Algebraic groups -- Affine algebraic groups -- Lie algebra of an algebraic group -- Correspondence between groups and Lie algebras -- Homogeneous spaces and quotients -- Solvable groups -- Reductive groups -- Borel subgroups, parabolic subgroups, Cartan subgroups -- Cartan subalgebras, Borel subalgebras and parabolic subalgebras -- Representations of semisimple Lie algebras -- Symmetric invariants -- S-triples -- Polarizations -- Results on orbits -- Centralizers -- ?-root systems -- Symmetric Lie algebras -- Semisimple symmetric Lie algebras -- Sheets of Lie algebras -- Index and linear forms. 
520 |a The theory of Lie algebras and algebraic groups has been an area of active research in the last 50 years. It intervenes in many different areas of mathematics: for example invariant theory, Poisson geometry, harmonic analysis, mathematical physics. The aim of this book is to assemble in a single volume the algebraic aspects of the theory so as to present the foundation of the theory in characteristic zero. Detailed proofs are included and some recent results are discussed in the last chapters. All the prerequisites on commutative algebra and algebraic geometry are included. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Group theory. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Group Theory and Generalizations. 
700 1 |a Yu, Rupert W. T.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540241706 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/b139060  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)