Combinatorics of Coxeter Groups

Coxeter groups are of central importance in several areas of algebra, geometry, and combinatorics. This clear and rigorous exposition focuses on the combinatorial aspects of Coxeter groups, such as reduced expressions, partial order of group elements, enumeration, associated graphs and combinatorial...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bjorner, Anders (Συγγραφέας), Brenti, Francesco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Graduate Texts in Mathematics, 231
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03273nam a22005415i 4500
001 978-3-540-27596-1
003 DE-He213
005 20151204150420.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540275961  |9 978-3-540-27596-1 
024 7 |a 10.1007/3-540-27596-7  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Bjorner, Anders.  |e author. 
245 1 0 |a Combinatorics of Coxeter Groups  |h [electronic resource] /  |c by Anders Bjorner, Francesco Brenti. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XIV, 366 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 231 
505 0 |a I -- The basics -- Bruhat order -- Weak order and reduced words -- Roots, games, and automata -- II -- Kazhdan-Lusztig and R-polynomials -- Kazhdan-Lusztig representations -- Enumeration -- Combinatorial Descriptions. 
520 |a Coxeter groups are of central importance in several areas of algebra, geometry, and combinatorics. This clear and rigorous exposition focuses on the combinatorial aspects of Coxeter groups, such as reduced expressions, partial order of group elements, enumeration, associated graphs and combinatorial cell complexes, and connections with combinatorial representation theory. While Coxeter groups have already been exposited from algebraic and geometric perspectives, this text is the first one to focus mainly on the combinatorial aspects of Coxeter groups. The first part of the book provides a self-contained introduction to combinatorial Coxeter group theory. The emphasis here is on the combinatorics of reduced decompositions, Bruhat order, weak order, and some aspects of root systems. The second part deals with more advanced topics, such as Kazhdan-Lusztig polynomials and representations, enumeration, and combinatorial descriptions of the classical finite and affine Weyl groups. A wide variety of exercises, ranging from easy to quite difficult are also included. The book will serve graduate students as well as researchers. Anders Björner is Professor of Mathematics at the Royal Institute of Technology in Stockholm, Sweden. Francesco Brenti is Professor of Mathematics at the University of Rome. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Combinatorics. 
700 1 |a Brenti, Francesco.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540442387 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 231 
856 4 0 |u http://dx.doi.org/10.1007/3-540-27596-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)