Multicriteria Optimization

Decision makers in many areas, from industry to engineering and the social sector, face an increasing need to consider multiple, conflicting objectives in their decision processes. In many cases these real world decision problems can be formulated as multicriteria mathematical optimization models. T...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ehrgott, Matthias (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Έκδοση:Second edition.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03138nam a22005055i 4500
001 978-3-540-27659-3
003 DE-He213
005 20151204174309.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540276593  |9 978-3-540-27659-3 
024 7 |a 10.1007/3-540-27659-9  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Ehrgott, Matthias.  |e author. 
245 1 0 |a Multicriteria Optimization  |h [electronic resource] /  |c by Matthias Ehrgott. 
250 |a Second edition. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XIII, 323 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Efficiency and Nondominance -- The Weighted Sum Method and Related Topics -- Scalarization Techniques -- Other Definitions of Optimality — Nonscalarizing Methods -- Introdcution to Multicriteria Linear Programming -- A Multiobjective Simplex Method -- Multiobjective Combinatorial Optimization -- Multiobjective Versions of Polynomially Solvable Problems -- Multiobjective Versions of Some NP-Hard Problems. 
520 |a Decision makers in many areas, from industry to engineering and the social sector, face an increasing need to consider multiple, conflicting objectives in their decision processes. In many cases these real world decision problems can be formulated as multicriteria mathematical optimization models. The solution of such models requires appropriate techniques to compute so called efficient, or Pareto optimal, or compromise solutions that - unlike traditional mathematical programming methods - take the contradictory nature of the criteria into account. This book provides the necessary mathematical foundation of multicriteria optimization to solve nonlinear, linear and combinatorial problems with multiple criteria. Motivational examples illustrate the use of multicriteria optimization in practice. Numerous illustrations and exercises as well as an extensive bibliography are provided. In the new edition a chapter on optimality conditions has been added. The linear programming part has been extended and includes new developments. Moreover, motivational examples are now introducing the majority of chapters. 
650 0 |a Business. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Mathematical optimization. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Optimization. 
650 2 4 |a Industrial and Production Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540213987 
856 4 0 |u http://dx.doi.org/10.1007/3-540-27659-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)