Introduction to Modern Number Theory Fundamental Problems, Ideas and Theories /

"Introduction to Modern Number Theory" surveys from a unified point of view both the modern state and the trends of continuing development of various branches of number theory. Motivated by elementary problems, the central ideas of modern theories are exposed. Some topics covered include n...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Manin, Yuri Ivanovic (Συγγραφέας), Panchishkin, Alexei A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Έκδοση:2.
Σειρά:Encyclopaedia of Mathematical Sciences, 49
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03650nam a22005655i 4500
001 978-3-540-27692-0
003 DE-He213
005 20151204184541.0
007 cr nn 008mamaa
008 130729s2005 gw | s |||| 0|eng d
020 |a 9783540276920  |9 978-3-540-27692-0 
024 7 |a 10.1007/3-540-27692-0  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Manin, Yuri Ivanovic.  |e author. 
245 1 0 |a Introduction to Modern Number Theory  |h [electronic resource] :  |b Fundamental Problems, Ideas and Theories /  |c by Yuri Ivanovic Manin, Alexei A. Panchishkin. 
250 |a 2. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XVI, 514 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences,  |x 0938-0396 ;  |v 49 
505 0 |a Problems and Tricks -- Number Theory -- Some Applications of Elementary Number Theory -- Ideas and Theories -- Induction and Recursion -- Arithmetic of algebraic numbers -- Arithmetic of algebraic varieties -- Zeta Functions and Modular Forms -- Fermat’s Last Theorem and Families of Modular Forms -- Analogies and Visions -- Introductory survey to part III: motivations and description -- Arakelov Geometry and Noncommutative Geometry (d’après C. Consani and M. Marcolli, [CM]). 
520 |a "Introduction to Modern Number Theory" surveys from a unified point of view both the modern state and the trends of continuing development of various branches of number theory. Motivated by elementary problems, the central ideas of modern theories are exposed. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories. Moreover, the authors have added a part dedicated to arithmetical cohomology and noncommutative geometry, a report on point counts on varieties with many rational points, the recent polynomial time algorithm for primality testing, and some others subjects. From the reviews of the 2nd edition: "… For my part, I come to praise this fine volume. This book is a highly instructive read … the quality, knowledge, and expertise of the authors shines through. … The present volume is almost startlingly up-to-date ..." (A. van der Poorten, Gazette, Australian Math. Soc. 34 (1), 2007). 
650 0 |a Mathematics. 
650 0 |a Data encryption (Computer science). 
650 0 |a Algebraic geometry. 
650 0 |a Mathematical logic. 
650 0 |a Number theory. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Data Encryption. 
650 2 4 |a Numerical and Computational Physics. 
700 1 |a Panchishkin, Alexei A.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540203643 
830 0 |a Encyclopaedia of Mathematical Sciences,  |x 0938-0396 ;  |v 49 
856 4 0 |u http://dx.doi.org/10.1007/3-540-27692-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)