|
|
|
|
LEADER |
06977nam a2200637 4500 |
001 |
978-3-540-27816-0 |
003 |
DE-He213 |
005 |
20191025221549.0 |
007 |
cr nn 008mamaa |
008 |
121227s2004 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540278160
|9 978-3-540-27816-0
|
024 |
7 |
|
|a 10.1007/b98995
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a TA1630-1650
|
072 |
|
7 |
|a UYT
|2 bicssc
|
072 |
|
7 |
|a COM012000
|2 bisacsh
|
072 |
|
7 |
|a UYT
|2 thema
|
072 |
|
7 |
|a UYQV
|2 thema
|
082 |
0 |
4 |
|a 006.6
|2 23
|
082 |
0 |
4 |
|a 006.37
|2 23
|
245 |
1 |
0 |
|a Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis
|h [electronic resource] :
|b ECCV 2004 Workshops CVAMIA and MMBIA Prague, Czech Republic, May 15, 2004, Revised Selected Papers /
|c edited by Milan Sonka, Ioannis A. Kakadiaris, Jan Kybic.
|
250 |
|
|
|a 1st ed. 2004.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2004.
|
300 |
|
|
|a XII, 444 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Computer Science,
|x 0302-9743 ;
|v 3117
|
505 |
0 |
|
|a Acquisition Techniques -- Ultrasound Stimulated Vibro-acoustography -- CT from an Unmodified Standard Fluoroscopy Machine Using a Non-reproducible Path -- Three-Dimensional Object Reconstruction from Compton Scattered Gamma-Ray Data -- Reconstruction -- Cone-Beam Image Reconstruction by Moving Frames -- AQUATICS Reconstruction Software: The Design of a Diagnostic Tool Based on Computer Vision Algorithms -- Towards Automatic Selection of the Regularization Parameters in Emission Tomgraphy by Fourier Synthesis -- Mathematical Methods -- Extraction of Myocardial Contractility Patterns from Short-Axes MR Images Using Independent Component Analysis -- Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors -- Symmetric Geodesic Shape Averaging and Shape Interpolation -- Smoothing Impulsive Noise Using Nonlinear Diffusion Filtering -- Level Set and Region Based Surface Propagation for Diffusion Tensor MRI Segmentation -- The Beltrami Flow over Triangulated Manifolds -- Hierarchical Analysis of Low-Contrast Temporal Images with Linear Scale Space -- Medical Image Segmentation -- Segmentation of Medical Images with a Shape and Motion Model: A Bayesian Perspective -- A Multi-scale Geometric Flow for Segmenting Vasculature in MRI -- A 2D Fourier Approach to Deformable Model Segmentation of 3D Medical Images -- Automatic Rib Segmentation in CT Data -- Efficient Initialization for Constrained Active Surfaces, Applications in 3D Medical Images -- An Information Fusion Method for the Automatic Delineation of the Bone-Soft Tissues Interface in Ultrasound Images -- Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials -- Three-Dimensional Mass Reconstruction in Mammography -- Segmentation of Abdominal Aortic Aneurysms with a Non-parametric Appearance Model -- Probabilistic Spatial-Temporal Segmentation of Multiple Sclerosis Lesions -- Segmenting Cell Images: A Deterministic Relaxation Approach -- Registration -- TIGER - A New Model for Spatio-temporal Realignment of FMRI Data -- Robust Registration of 3-D Ultrasound Images Based on Gabor Filter and Mean-Shift Method -- Deformable Image Registration by Adaptive Gaussian Forces -- Applications -- Statistical Imaging for Modeling and Identification of Bacterial Types -- Assessment of Intrathoracic Airway Trees: Methods and In Vivo Validation -- Computer-Aided Measurement of Solid Breast Tumor Features on Ultrasound Images -- Can a Continuity Heuristic Be Used to Resolve the Inclination Ambiguity of Polarized Light Imaging? -- Applications of Image Registration in Human Genome Research -- Fast Marching 3D Reconstruction of Interphase Chromosomes -- Robust Extraction of the Optic Nerve Head in Optical Coherence Tomography -- Scale-Space Diagnostic Criterion for Microscopic Image Analysis -- Image Registration Neural System for the Analysis of Fundus Topology -- Robust Identification of Object Elasticity.
|
520 |
|
|
|a Medical imaging and medical image analysisare rapidly developing. While m- ical imaging has already become a standard of modern medical care, medical image analysis is still mostly performed visually and qualitatively. The ev- increasing volume of acquired data makes it impossible to utilize them in full. Equally important, the visual approaches to medical image analysis are known to su?er from a lack of reproducibility. A signi?cant researche?ort is devoted to developing algorithms for processing the wealth of data available and extracting the relevant information in a computerized and quantitative fashion. Medical imaging and image analysis are interdisciplinary areas combining electrical, computer, and biomedical engineering; computer science; mathem- ics; physics; statistics; biology; medicine; and other ?elds. Medical imaging and computer vision, interestingly enough, have developed and continue developing somewhat independently. Nevertheless, bringing them together promises to b- e?t both of these ?elds. We were enthusiastic when the organizers of the 2004 European Conference on Computer Vision (ECCV) allowed us to organize a satellite workshop devoted to medical image analysis.
|
650 |
|
0 |
|a Optical data processing.
|
650 |
|
0 |
|a Computer industry.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Pattern recognition.
|
650 |
|
0 |
|a Computer graphics.
|
650 |
|
0 |
|a Health informatics.
|
650 |
1 |
4 |
|a Image Processing and Computer Vision.
|0 http://scigraph.springernature.com/things/product-market-codes/I22021
|
650 |
2 |
4 |
|a The Computer Industry.
|0 http://scigraph.springernature.com/things/product-market-codes/I24016
|
650 |
2 |
4 |
|a Artificial Intelligence.
|0 http://scigraph.springernature.com/things/product-market-codes/I21000
|
650 |
2 |
4 |
|a Pattern Recognition.
|0 http://scigraph.springernature.com/things/product-market-codes/I2203X
|
650 |
2 |
4 |
|a Computer Graphics.
|0 http://scigraph.springernature.com/things/product-market-codes/I22013
|
650 |
2 |
4 |
|a Health Informatics.
|0 http://scigraph.springernature.com/things/product-market-codes/H28009
|
700 |
1 |
|
|a Sonka, Milan.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Kakadiaris, Ioannis A.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Kybic, Jan.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783662191941
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540226758
|
830 |
|
0 |
|a Lecture Notes in Computer Science,
|x 0302-9743 ;
|v 3117
|
856 |
4 |
0 |
|u https://doi.org/10.1007/b98995
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-LNC
|
912 |
|
|
|a ZDB-2-BAE
|
950 |
|
|
|a Computer Science (Springer-11645)
|