Learning Theory 17th Annual Conference on Learning Theory, COLT 2004, Banff, Canada, July 1-4, 2004. Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Shawe-Taylor, John (Επιμελητής έκδοσης), Singer, Yoram (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2004.
Σειρά:Lecture Notes in Computer Science, 3120
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05108nam a22005535i 4500
001 978-3-540-27819-1
003 DE-He213
005 20151123191717.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540278191  |9 978-3-540-27819-1 
024 7 |a 10.1007/b98522  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Learning Theory  |h [electronic resource] :  |b 17th Annual Conference on Learning Theory, COLT 2004, Banff, Canada, July 1-4, 2004. Proceedings /  |c edited by John Shawe-Taylor, Yoram Singer. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2004. 
300 |a X, 654 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3120 
505 0 |a Economics and Game Theory -- Towards a Characterization of Polynomial Preference Elicitation with Value Queries in Combinatorial Auctions -- Graphical Economics -- Deterministic Calibration and Nash Equilibrium -- Reinforcement Learning for Average Reward Zero-Sum Games -- OnLine Learning -- Polynomial Time Prediction Strategy with Almost Optimal Mistake Probability -- Minimizing Regret with Label Efficient Prediction -- Regret Bounds for Hierarchical Classification with Linear-Threshold Functions -- Online Geometric Optimization in the Bandit Setting Against an Adaptive Adversary -- Inductive Inference -- Learning Classes of Probabilistic Automata -- On the Learnability of E-pattern Languages over Small Alphabets -- Replacing Limit Learners with Equally Powerful One-Shot Query Learners -- Probabilistic Models -- Concentration Bounds for Unigrams Language Model -- Inferring Mixtures of Markov Chains -- Boolean Function Learning -- PExact = Exact Learning -- Learning a Hidden Graph Using O(log n) Queries Per Edge -- Toward Attribute Efficient Learning of Decision Lists and Parities -- Empirical Processes -- Learning Over Compact Metric Spaces -- A Function Representation for Learning in Banach Spaces -- Local Complexities for Empirical Risk Minimization -- Model Selection by Bootstrap Penalization for Classification -- MDL -- Convergence of Discrete MDL for Sequential Prediction -- On the Convergence of MDL Density Estimation -- Suboptimal Behavior of Bayes and MDL in Classification Under Misspecification -- Generalisation I -- Learning Intersections of Halfspaces with a Margin -- A General Convergence Theorem for the Decomposition Method -- Generalisation II -- Oracle Bounds and Exact Algorithm for Dyadic Classification Trees -- An Improved VC Dimension Bound for Sparse Polynomials -- A New PAC Bound for Intersection-Closed Concept Classes -- Clustering and Distributed Learning -- A Framework for Statistical Clustering with a Constant Time Approximation Algorithms for K-Median Clustering -- Data Dependent Risk Bounds for Hierarchical Mixture of Experts Classifiers -- Consistency in Models for Communication Constrained Distributed Learning -- On the Convergence of Spectral Clustering on Random Samples: The Normalized Case -- Boosting -- Performance Guarantees for Regularized Maximum Entropy Density Estimation -- Learning Monotonic Linear Functions -- Boosting Based on a Smooth Margin -- Kernels and Probabilities -- Bayesian Networks and Inner Product Spaces -- An Inequality for Nearly Log-Concave Distributions with Applications to Learning -- Bayes and Tukey Meet at the Center Point -- Sparseness Versus Estimating Conditional Probabilities: Some Asymptotic Results -- Kernels and Kernel Matrices -- A Statistical Mechanics Analysis of Gram Matrix Eigenvalue Spectra -- Statistical Properties of Kernel Principal Component Analysis -- Kernelizing Sorting, Permutation, and Alignment for Minimum Volume PCA -- Regularization and Semi-supervised Learning on Large Graphs -- Open Problems -- Perceptron-Like Performance for Intersections of Halfspaces -- The Optimal PAC Algorithm -- The Budgeted Multi-armed Bandit Problem. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Mathematical logic. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Computation by Abstract Devices. 
700 1 |a Shawe-Taylor, John.  |e editor. 
700 1 |a Singer, Yoram.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540222828 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3120 
856 4 0 |u http://dx.doi.org/10.1007/b98522  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)