Transport Coefficients of Fluids

Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Eu, Byung Chan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Chemical physics, 82
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03149nam a22005655i 4500
001 978-3-540-28216-7
003 DE-He213
005 20151204170103.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540282167  |9 978-3-540-28216-7 
024 7 |a 10.1007/3-540-28216-5  |2 doi 
040 |d GrThAP 
050 4 |a QC6.4.C6 
072 7 |a PHD  |2 bicssc 
072 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 531  |2 23 
100 1 |a Eu, Byung Chan.  |e author. 
245 1 0 |a Transport Coefficients of Fluids  |h [electronic resource] /  |c by Byung Chan Eu. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XIV, 408 p. 65 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Chemical physics,  |x 0172-6218 ;  |v 82 
505 0 |a Transport Coefficients of Dilute Gases -- Boltzmann Equation for Dilute -- Transport Processes in Monatomic Gases -- Boltzmann Equation for Dilute Polyatomic Gases -- Transport Processes in Dilute Polyatomic Gases -- Transport Coefficients of Liquids -- Equation of State and Equilibrium Properties of Liquids -- Generalized Boltzmann Equation -- Generalized Boltzmann Equation for Polyatomic Liquids -- Dynamic Ornstein–Zernike Equation -- Density Fluctuation Theory: Simple Fluids -- Density Fluctuation Theory: Complex Fluids -- Free Volume Theory and Transport Coefficients. 
520 |a Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium. 
650 0 |a Physics. 
650 0 |a Physical chemistry. 
650 0 |a Continuum physics. 
650 0 |a Fluids. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Engineering. 
650 0 |a Fluid mechanics. 
650 1 4 |a Physics. 
650 2 4 |a Classical Continuum Physics. 
650 2 4 |a Physical Chemistry. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Fluid- and Aerodynamics. 
650 2 4 |a Engineering, general. 
650 2 4 |a Engineering Fluid Dynamics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540281870 
830 0 |a Chemical physics,  |x 0172-6218 ;  |v 82 
856 4 0 |u http://dx.doi.org/10.1007/3-540-28216-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)