Image Processing Using Pulse-Coupled Neural Networks

This is the first book to explain and demonstrate the tremendous ability of Pulse-Coupled Neural Networks (PCNNs) when applied to the field of image processing. PCNNs and their derivatives are biologically inspired models that are powerful tools for extracting texture, segments, and edges from image...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lindblad, T. (Συγγραφέας), Kinser, J.M (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Έκδοση:Second, Revised Edition.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02972nam a22006255i 4500
001 978-3-540-28293-8
003 DE-He213
005 20151204181750.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540282938  |9 978-3-540-28293-8 
024 7 |a 10.1007/3-540-28293-9  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Lindblad, T.  |e author. 
245 1 0 |a Image Processing Using Pulse-Coupled Neural Networks  |h [electronic resource] /  |c by T. Lindblad, J.M. Kinser. 
250 |a Second, Revised Edition. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XI, 164 p. 139 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a and Theory -- Theory of Digital Simulation -- Automated Image Object Recognition -- Image Fusion -- Image Texture Processing -- Image Signatures -- Miscellaneous Applications -- Hardware Implementations. 
520 |a This is the first book to explain and demonstrate the tremendous ability of Pulse-Coupled Neural Networks (PCNNs) when applied to the field of image processing. PCNNs and their derivatives are biologically inspired models that are powerful tools for extracting texture, segments, and edges from images. As these attributes form the foundations of most image processing tasks, the use of PCNNs facilitates traditional tasks such as recognition, foveation, and image fusion. PCNN technology has also paved the way for new image processing techniques such as object isolation, spiral image fusion, image signatures, and content-based image searches. This volume contains examples of several image processing applications, as well as a review of hardware implementations. 
650 0 |a Engineering. 
650 0 |a Biophysics. 
650 0 |a Biological physics. 
650 0 |a Optics. 
650 0 |a Optoelectronics. 
650 0 |a Plasmons (Physics). 
650 0 |a Statistics. 
650 0 |a Materials  |x Surfaces. 
650 0 |a Thin films. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Surfaces and Interfaces, Thin Films. 
650 2 4 |a Optics, Optoelectronics, Plasmonics and Optical Devices. 
650 2 4 |a Biophysics and Biological Physics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Engineering, general. 
700 1 |a Kinser, J.M.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540242185 
856 4 0 |u http://dx.doi.org/10.1007/3-540-28293-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)