Grouping Multidimensional Data Recent Advances in Clustering /

Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anom...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kogan, Jacob (Επιμελητής έκδοσης), Nicholas, Charles (Επιμελητής έκδοσης), Teboulle, Marc (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03471nam a22005535i 4500
001 978-3-540-28349-2
003 DE-He213
005 20151204145946.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540283492  |9 978-3-540-28349-2 
024 7 |a 10.1007/3-540-28349-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D35 
072 7 |a UMB  |2 bicssc 
072 7 |a URY  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 005.74  |2 23 
245 1 0 |a Grouping Multidimensional Data  |h [electronic resource] :  |b Recent Advances in Clustering /  |c edited by Jacob Kogan, Charles Nicholas, Marc Teboulle. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XII, 268 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a The Star Clustering Algorithm for Information Organization -- A Survey of Clustering Data Mining Techniques -- Similarity-Based Text Clustering: A Comparative Study -- Clustering Very Large Data Sets with Principal Direction Divisive Partitioning -- Clustering with Entropy-Like k-Means Algorithms -- Sampling Methods for Building Initial Partitions -- TMG: A MATLAB Toolbox for Generating Term-Document Matrices from Text Collections -- Criterion Functions for Clustering on High-Dimensional Data. 
520 |a Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection. Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview. The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas. 
650 0 |a Computer science. 
650 0 |a Data structures (Computer science). 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Information storage and retrieval. 
650 0 |a Pattern recognition. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Pattern Recognition. 
700 1 |a Kogan, Jacob.  |e editor. 
700 1 |a Nicholas, Charles.  |e editor. 
700 1 |a Teboulle, Marc.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540283485 
856 4 0 |u http://dx.doi.org/10.1007/3-540-28349-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)