Data Stream Management Processing High-Speed Data Streams /

We live in the era of “Big Data”: Petabytes of digital information are generated daily, and need to be processed and analyzed for interesting patterns and trends. Besides volume, a defining characteristic of Big Data is its velocity; that is, data is instantiated in the form of continuous, high-spee...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Garofalakis, Minos (Επιμελητής έκδοσης), Gehrke, Johannes (Επιμελητής έκδοσης), Rastogi, Rajeev (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2016.
Σειρά:Data-Centric Systems and Applications,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04570nam a22005655i 4500
001 978-3-540-28608-0
003 DE-He213
005 20160719141619.0
007 cr nn 008mamaa
008 160711s2016 gw | s |||| 0|eng d
020 |a 9783540286080  |9 978-3-540-28608-0 
024 7 |a 10.1007/978-3-540-28608-0  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a UMT  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
082 0 4 |a 005.74  |2 23 
245 1 0 |a Data Stream Management  |h [electronic resource] :  |b Processing High-Speed Data Streams /  |c edited by Minos Garofalakis, Johannes Gehrke, Rajeev Rastogi. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2016. 
300 |a VII, 537 p. 103 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Data-Centric Systems and Applications,  |x 2197-9723 
505 0 |a Part I: Introduction -- Part II: Computation of Basic Stream Synopses -- Part III: Mining Data Streams -- Part IV: Advanced Topics -- Part V: Systems and Architectures -- Part VI: Applications. . 
520 |a We live in the era of “Big Data”: Petabytes of digital information are generated daily, and need to be processed and analyzed for interesting patterns and trends. Besides volume, a defining characteristic of Big Data is its velocity; that is, data is instantiated in the form of continuous, high-speed data streams that arrive at rapid rates, and need to be processed and analyzed on a continuous (24x7) basis. Such data streams pose very difficult challenges for conventional data-management architectures, which are built primarily on the concept of persistent, static data collections. This volume focuses on the theory and practice of data stream management, and the novel challenges this emerging domain poses for data-management algorithms, systems, and applications. The collection of chapters, contributed by authorities in the field, offers a comprehensive introduction to both the algorithmic/theoretical foundations of data streams, as well as the streaming systems and applications built in different domains. A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processing algorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of streaming techniques in different domains (e.g., network management, financial analytics). Finally, the volume concludes with an overview of current data streaming products and new application domains (e.g. cloud computing, big data analytics, and complex event processing), and a discussion of future directions in this exciting field. The book provides a comprehensive overview of core concepts and technological foundations, as well as various systems and applications, and is of particular interest to students, lecturers and researchers in the area of data stream management. . 
650 0 |a Computer science. 
650 0 |a Big data. 
650 0 |a Data structures (Computer science). 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Computer Science. 
650 2 4 |a Database Management. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Data Structures. 
650 2 4 |a Information Storage and Retrieval. 
700 1 |a Garofalakis, Minos.  |e editor. 
700 1 |a Gehrke, Johannes.  |e editor. 
700 1 |a Rastogi, Rajeev.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540286073 
830 0 |a Data-Centric Systems and Applications,  |x 2197-9723 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-28608-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)