Advanced Lectures on Machine Learning ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures /

Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is publ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bousquet, Olivier (Επιμελητής έκδοσης), Luxburg, Ulrike von (Επιμελητής έκδοσης), Rätsch, Gunnar (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Σειρά:Lecture Notes in Computer Science, 3176
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03371nam a22005895i 4500
001 978-3-540-28650-9
003 DE-He213
005 20170116145019.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540286509  |9 978-3-540-28650-9 
024 7 |a 10.1007/b100712  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Advanced Lectures on Machine Learning  |h [electronic resource] :  |b ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures /  |c edited by Olivier Bousquet, Ulrike von Luxburg, Gunnar Rätsch. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a X, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3176 
505 0 |a An Introduction to Pattern Classification -- Some Notes on Applied Mathematics for Machine Learning -- Bayesian Inference: An Introduction to Principles and Practice in Machine Learning -- Gaussian Processes in Machine Learning -- Unsupervised Learning -- Monte Carlo Methods for Absolute Beginners -- Stochastic Learning -- to Statistical Learning Theory -- Concentration Inequalities. 
520 |a Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Science, general. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Pattern Recognition. 
700 1 |a Bousquet, Olivier.  |e editor. 
700 1 |a Luxburg, Ulrike von.  |e editor. 
700 1 |a Rätsch, Gunnar.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540231226 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3176 
856 4 0 |u http://dx.doi.org/10.1007/b100712  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)