Dynamical Systems Examples of Complex Behaviour /

Our aim is to introduce, explain, and discuss the fundamental problems, ideas, concepts, results, and methods of the theory of dynamical systems and to show how they can be used in speci?c examples. We do not intend to give a comprehensive overview of the present state of research in the theory of d...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jost, Jürgen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03504nam a22005655i 4500
001 978-3-540-28889-3
003 DE-He213
005 20151204162239.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540288893  |9 978-3-540-28889-3 
024 7 |a 10.1007/3-540-28889-9  |2 doi 
040 |d GrThAP 
050 4 |a QC1-75 
072 7 |a PH  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
082 0 4 |a 530  |2 23 
100 1 |a Jost, Jürgen.  |e author. 
245 1 0 |a Dynamical Systems  |h [electronic resource] :  |b Examples of Complex Behaviour /  |c by Jürgen Jost. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a VIII, 190 p. 65 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Stability of dynamical systems, bifurcations, and generic properties -- Discrete invariants of dynamical systems -- Entropy and topological aspects of dynamical systems -- Entropy and metric aspects of dynamical systems -- Entropy and measure theoretic aspects of dynamical systems -- Smooth dynamical systems -- Cellular automata and Boolean networks as examples of discrete dynamical systems. 
520 |a Our aim is to introduce, explain, and discuss the fundamental problems, ideas, concepts, results, and methods of the theory of dynamical systems and to show how they can be used in speci?c examples. We do not intend to give a comprehensive overview of the present state of research in the theory of dynamical systems, nor a detailed historical account of its development. We try to explain the important results, often neglecting technical re?nements 1 and, usually, we do not provide proofs. One of the basic questions in studying dynamical systems, i.e. systems that evolve in time, is the construction of invariants that allow us to classify qualitative types of dynamical evolution, to distinguish between qualitatively di?erent dynamics, and to studytransitions between di?erent types. Itis also important to ?nd out when a certain dynamic behavior is stable under small perturbations, as well as to understand the various scenarios of instability. Finally, an essential aspect of a dynamic evolution is the transformation of some given initial state into some ?nal or asymptotic state as time proceeds. Thetemporalevolutionofadynamicalsystemmaybecontinuousordiscrete, butitturnsoutthatmanyoftheconceptstobeintroducedareusefulineither case. 
650 0 |a Physics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Calculus of variations. 
650 0 |a Economic theory. 
650 1 4 |a Physics. 
650 2 4 |a Physics, general. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540229087 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/3-540-28889-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)