Algebraic Theory of Locally Nilpotent Derivations

This book explores the theory and application of locally nilpotent derivations, which is a subject of growing interest and importance not only among those in commutative algebra and algebraic geometry, but also in fields such as Lie algebras and differential equations. The author provides a unified...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Freudenburg, Gene (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups VII, 136
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03162nam a22005175i 4500
001 978-3-540-29523-5
003 DE-He213
005 20160806061433.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540295235  |9 978-3-540-29523-5 
024 7 |a 10.1007/978-3-540-29523-5  |2 doi 
040 |d GrThAP 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Freudenburg, Gene.  |e author. 
245 1 0 |a Algebraic Theory of Locally Nilpotent Derivations  |h [electronic resource] /  |c by Gene Freudenburg. 
246 3 |a Invariant Theory and Algebraic Transformation Groups VII 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XI, 261 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups VII,  |x 0938-0396 ;  |v 136 
505 0 |a First Principles -- Further Properties of Locally Nilpotent Derivations -- Polynomial Rings -- Dimension Two -- Dimension Three -- Linear Actions of Unipotent Groups -- Non-Finitely Generated Kernels -- Algorithms -- The Makar-Limanov and Derksen Invariants -- Slices, Embeddings and Cancellation -- Epilogue. 
520 |a This book explores the theory and application of locally nilpotent derivations, which is a subject of growing interest and importance not only among those in commutative algebra and algebraic geometry, but also in fields such as Lie algebras and differential equations. The author provides a unified treatment of the subject, beginning with 16 First Principles on which the entire theory is based. These are used to establish classical results, such as Rentschler’s Theorem for the plane, right up to the most recent results, such as Makar-Limanov’s Theorem for locally nilpotent derivations of polynomial rings. Topics of special interest include: progress in the dimension three case, finiteness questions (Hilbert’s 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem. The reader will also find a wealth of pertinent examples and open problems and an up-to-date resource for research. . 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540295211 
830 0 |a Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups VII,  |x 0938-0396 ;  |v 136 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-29523-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)