Modular Algorithms in Symbolic Summation and Symbolic Integration

This work brings together two streams in computer algebra: symbolic integration and summation on the one hand, and fast algorithmics on the other hand. In many algorithmically oriented areas of computer science, theanalysisof- gorithms–placedintothe limelightbyDonKnuth’stalkat the 1970ICM –provides...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gerhard, Jürgen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Lecture Notes in Computer Science, 3218
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03762nam a22005295i 4500
001 978-3-540-30137-0
003 DE-He213
005 20151204171443.0
007 cr nn 008mamaa
008 101024s2005 gw | s |||| 0|eng d
020 |a 9783540301370  |9 978-3-540-30137-0 
024 7 |a 10.1007/b104035  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.A43 
072 7 |a UMB  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
100 1 |a Gerhard, Jürgen.  |e author. 
245 1 0 |a Modular Algorithms in Symbolic Summation and Symbolic Integration  |h [electronic resource] /  |c by Jürgen Gerhard. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XVI, 228 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3218 
505 0 |a 1. Introduction -- 2. Overview -- 3. Technical Prerequisites -- 4. Change of Basis -- 5. Modular Squarefree and Greatest Factorial Factorization -- 6. Modular Hermite Integration -- 7. Computing All Integral Roots of the Resultant -- 8. Modular Algorithms for the Gosper-Petkovšek Form -- 9. Polynomial Solutions of Linear First Order Equations -- 10. Modular Gosper and Almkvist & Zeilberger Algorithms. 
520 |a This work brings together two streams in computer algebra: symbolic integration and summation on the one hand, and fast algorithmics on the other hand. In many algorithmically oriented areas of computer science, theanalysisof- gorithms–placedintothe limelightbyDonKnuth’stalkat the 1970ICM –provides a crystal-clear criterion for success. The researcher who designs an algorithmthat is faster (asymptotically, in the worst case) than any previous method receives instant grati?cation: her result will be recognized as valuable. Alas, the downside is that such results come along quite infrequently, despite our best efforts. An alternative evaluation method is to run a new algorithm on examples; this has its obvious problems, but is sometimes the best we can do. George Collins, one of the fathers of computer algebra and a great experimenter,wrote in 1969: “I think this demonstrates again that a simple analysis is often more revealing than a ream of empirical data (although both are important). ” Within computer algebra, some areas have traditionally followed the former methodology, notably some parts of polynomial algebra and linear algebra. Other areas, such as polynomial system solving, have not yet been amenable to this - proach. The usual “input size” parameters of computer science seem inadequate, and although some natural “geometric” parameters have been identi?ed (solution dimension, regularity), not all (potential) major progress can be expressed in this framework. Symbolic integration and summation have been in a similar state. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Numerical analysis. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Numeric Computing. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
650 2 4 |a Algorithms. 
650 2 4 |a Computational Science and Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540240617 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3218 
856 4 0 |u http://dx.doi.org/10.1007/b104035  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)