Algorithmic Learning Theory 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings /

Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, e...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ben David, Shai (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Case, John (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Maruoka, Akira (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Lecture Notes in Artificial Intelligence ; 3244
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06613nam a2200589 4500
001 978-3-540-30215-5
003 DE-He213
005 20191026071617.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540302155  |9 978-3-540-30215-5 
024 7 |a 10.1007/b100989  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Algorithmic Learning Theory  |h [electronic resource] :  |b 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings /  |c edited by Shai Ben David, John Case, Akira Maruoka. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a XIV, 514 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 3244 
505 0 |a Invited Papers -- String Pattern Discovery -- Applications of Regularized Least Squares to Classification Problems -- Probabilistic Inductive Logic Programming -- Hidden Markov Modelling Techniques for Haplotype Analysis -- Learning, Logic, and Probability: A Unified View -- Regular Contributions -- Learning Languages from Positive Data and Negative Counterexamples -- Inductive Inference of Term Rewriting Systems from Positive Data -- On the Data Consumption Benefits of Accepting Increased Uncertainty -- Comparison of Query Learning and Gold-Style Learning in Dependence of the Hypothesis Space -- Learning r-of-k Functions by Boosting -- Boosting Based on Divide and Merge -- Learning Boolean Functions in AC 0 on Attribute and Classification Noise -- Decision Trees: More Theoretical Justification for Practical Algorithms -- Application of Classical Nonparametric Predictors to Learning Conditionally I.I.D. Data -- Complexity of Pattern Classes and Lipschitz Property -- On Kernels, Margins, and Low-Dimensional Mappings -- Estimation of the Data Region Using Extreme-Value Distributions -- Maximum Entropy Principle in Non-ordered Setting -- Universal Convergence of Semimeasures on Individual Random Sequences -- A Criterion for the Existence of Predictive Complexity for Binary Games -- Full Information Game with Gains and Losses -- Prediction with Expert Advice by Following the Perturbed Leader for General Weights -- On the Convergence Speed of MDL Predictions for Bernoulli Sequences -- Relative Loss Bounds and Polynomial-Time Predictions for the k-lms-net Algorithm -- On the Complexity of Working Set Selection -- Convergence of a Generalized Gradient Selection Approach for the Decomposition Method -- Newton Diagram and Stochastic Complexity in Mixture of Binomial Distributions -- Learnability of Relatively Quantified Generalized Formulas -- Learning Languages Generated by Elementary Formal Systems and Its Application to SH Languages -- New Revision Algorithms -- The Subsumption Lattice and Query Learning -- Learning of Ordered Tree Languages with Height-Bounded Variables Using Queries -- Learning Tree Languages from Positive Examples and Membership Queries -- Learning Content Sequencing in an Educational Environment According to Student Needs -- Tutorial Papers -- Statistical Learning in Digital Wireless Communications -- A BP-Based Algorithm for Performing Bayesian Inference in Large Perceptron-Type Networks -- Approximate Inference in Probabilistic Models. 
520 |a Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical ?elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the ?eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re?ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the ?eld, placing each of these topics in the general context of the ?eld. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. A ?rst dichotomy is between viewing learning as an inde?nite process and viewing it as a ?nite activity with a de?ned termination. Inductive Inference models focus on inde?nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Mathematical logic. 
650 0 |a Natural language processing (Computer science). 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
650 2 4 |a Natural Language Processing (NLP).  |0 http://scigraph.springernature.com/things/product-market-codes/I21040 
700 1 |a Ben David, Shai.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Case, John.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Maruoka, Akira.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662205204 
776 0 8 |i Printed edition:  |z 9783540233565 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 3244 
856 4 0 |u https://doi.org/10.1007/b100989  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)