Theory of Association Schemes

The present text is an introduction to the theory of association schemes. We start with the de?nition of an association scheme (or a scheme as we shall say brie?y), and in order to do so we ?x a set and call it X. We write 1 to denote the set of all pairs (x,x) with x? X. For each subset X ? r of th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zieschang, Paul-Hermann (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02782nam a22004815i 4500
001 978-3-540-30593-4
003 DE-He213
005 20151029231357.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540305934  |9 978-3-540-30593-4 
024 7 |a 10.1007/3-540-30593-9  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Zieschang, Paul-Hermann.  |e author. 
245 1 0 |a Theory of Association Schemes  |h [electronic resource] /  |c by Paul-Hermann Zieschang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XVI, 284 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Basic Facts -- Closed Subsets -- Generating Subsets -- Quotient Schemes -- Morphisms -- Faithful Maps -- Products -- From Thin Schemes to Modules -- Scheme Rings -- Dihedral Closed Subsets -- Coxeter Sets -- Spherical Coxeter Sets. 
520 |a The present text is an introduction to the theory of association schemes. We start with the de?nition of an association scheme (or a scheme as we shall say brie?y), and in order to do so we ?x a set and call it X. We write 1 to denote the set of all pairs (x,x) with x? X. For each subset X ? r of the cartesian product X×X, we de?ne r to be the set of all pairs (y,z) with (z,y)? r.For x an element of X and r a subset of X× X, we shall denote by xr the set of all elements y in X with (x,y)? r. Let us ?x a partition S of X×X with?? / S and 1 ? S, and let us assume X ? that s ? S for each element s in S. The set S is called a scheme on X if, for any three elements p, q,and r in S, there exists a cardinal number a such pqr ? that|yp?zq| = a for any two elements y in X and z in yr. pqr The notion of a scheme generalizes naturally the notion of a group, and we shall base all our considerations on this observation. Let us, therefore, brie?y look at the relationship between groups and schemes. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Geometry. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Combinatorics. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540261360 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/3-540-30593-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)