Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics /

Spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of their 1988 boo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Canuto, Claudio (Συγγραφέας), Quarteroni, Alfio (Συγγραφέας), Hussaini, M. Yousuff (Συγγραφέας), Zang, Thomas A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Scientific Computation,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04503nam a22005775i 4500
001 978-3-540-30728-0
003 DE-He213
005 20151204185523.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540307280  |9 978-3-540-30728-0 
024 7 |a 10.1007/978-3-540-30728-0  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Canuto, Claudio.  |e author. 
245 1 0 |a Spectral Methods  |h [electronic resource] :  |b Evolution to Complex Geometries and Applications to Fluid Dynamics /  |c by Claudio Canuto, Alfio Quarteroni, M. Yousuff Hussaini, Thomas A. Zang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XXX, 596 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Scientific Computation,  |x 1434-8322 
505 0 |a Fundamentals of Fluid Dynamics -- Single-Domain Algorithms and Applications for Stability Analysis -- Single-Domain Algorithms and Applications for Incompressible Flows -- Single-Domain Algorithms and Applications for Compressible Flows -- Discretization Strategies for Spectral Methods in Complex Domains -- Solution Strategies for Spectral Methods in Complex Domains -- General Algorithms for Incompressible Navier-Stokes Equations -- Spectral Methods Primer. 
520 |a Spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of their 1988 book, Canuto et al. now incorporate the many improvements in the algorithms and the theory of spectral methods that have been made since then. This second new treatment, Evolution to Complex Geometries and Applications to Fluid Dynamics, provides an extensive overview of the essential algorithmic and theoretical aspects of spectral methods for complex geometries, in addition to detailed discussions of spectral algorithms for fluid dynamics in simple and complex geometries. Modern strategies for constructing spectral approximations in complex domains, such as spectral elements, mortar elements, and discontinuous Galerkin methods, as well as patching collocation, are introduced, analyzed, and demonstrated by means of numerous numerical examples. Representative simulations from continuum mechanics are also shown. Efficient domain decomposition preconditioners (of both Schwarz and Schur type) that are amenable to parallel implementation are surveyed. The discussion of spectral algorithms for fluid dynamics in single domains focuses on proven algorithms for the boundary-layer equations, linear and nonlinear stability analyses, incompressible Navier-Stokes problems, and both inviscid and viscous compressible flows. An overview of the modern approach to computing incompressible flows in general geometries using high-order, spectral discretizations is also provided. The recent companion book Fundamentals in Single Domains discusses the fundamentals of the approximation of solutions to ordinary and partial differential equations on single domains by expansions in smooth, global basis functions. The essential concepts and formulas from this book are included in the current text for the reader’s convenience. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Computer mathematics. 
650 0 |a Physics. 
650 0 |a Fluids. 
650 0 |a Fluid mechanics. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Fluid- and Aerodynamics. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Quarteroni, Alfio.  |e author. 
700 1 |a Hussaini, M. Yousuff.  |e author. 
700 1 |a Zang, Thomas A.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540307273 
830 0 |a Scientific Computation,  |x 1434-8322 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-30728-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)