Foundations and Novel Approaches in Data Mining
Data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor” syndrome. Currently, application oriented engineers are only concerned with their immediate problems, which results in an ad hoc method of problem solving. Researchers, on t...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2006.
|
Σειρά: | Studies in Computational Intelligence,
9 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- From the contents Part I: Theoretical Foundations. Commonsense Causal Modeling in the Data Mining Context. Definability of Association Rules in Predicate Calculus. A Measurement-Theoretic Foundation of Rule Interestingness Evaluation. Statistical Independence as Linear Dependence in a Contingency Table. Foundations of Classification
- Part II: Novel Approaches. SVM-OD: SVM Method to Detect Outliers. Extracting Rules from Incomplete Decision Systems: System ERID. Mining for Patterns Based on Contingency Tables by KL-Miner – First Experience. Knowledge Discovery in Fuzzy Databases Using Attribute-Oriented Induction. Rough Set Strategies to Data with Missing Attribute Values. Privacy-Preserving Collaborative Data Mining
- Part III: Novel Applications. Research Issues in Web Structural Delta Mining. Workflow Reduction for Reachable-path Rediscovery in Workflow Mining. Principal Component-based Anomaly Detection Scheme. Making Better Sense of the Demographic Data Value in the Data Mining Procedure.